Answer:
α = 3×10^-5 K^-1
Explanation:
let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.
then, the coefficient of linear expansion is given by:
α = ΔL/(ΔT×L)
= (0.3×10^-3)/(100)(100×10^-3)
= 3×10^-5 K^-1
Therefore, the coefficient of linear expansion is 3×10^-5 K^-1
In fresh water sound waves travel at 1497m/s at 25 degrees, I'll assume that's the characteristics of the water.
If it's 0.01s then you need to divide the speed by 100 to get the, 14.97, however it gets there and back in that time so you need to halve it.
<u>7.485m</u>
Answer:
diminished and erect( upright)
Explanation:
Answer:
the boat would be deeped by 3200 m
Explanation:
Given that
The boat arrives back after 4 seconds
And, the speed of the sound in water is 1,600 m/s
We need to find out how much deep is the water
So,
As we know that
Distance = ( speed × time) ÷ 2
Here we divided by 2 because the boat arrives back
= (1600 × 4) ÷ 2
= 3200 m
Therefore the boat would be deeped by 3200 m
The cup is acted upon by an unbalanced force which is the cars acceleration, but before it was an object at rest that stayed at rest. This jet propels their body forward.