Answer:
a) V = 252 cm³
b) Vs = 72 cm³
Explanation:
a)
The volume of the water can be given by the following formula:

<u>V = 252 cm³</u>
<u></u>
b)
The volume of stone can be given by the change in volume of the water when the stone is dipped into it.

<u>Vs = 72 cm³</u>
Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor
Answer:
I'm not 100% sure tbh but the only thing I think makes sense to represent vibration would be frequency which is measure in Hertz (Hz)
Explanation:
To solve the problem we will apply the concepts related to the Intensity as a function of the power and the area, as well as the electric field as a function of the current, the speed of light and the permeability in free space, as shown below.
The intensity of the wave at the receiver is




The amplitude of electric field at the receiver is


The amplitude of induced emf by this signal between the ends of the receiving antenna is


Here,
I = Current
= Permeability at free space
c = Light speed
d = Distance
Replacing,


Thus, the amplitude of induced emf by this signal between the ends of the receiving antenna is 0.0543V
Answer:
Explanation:
Cutting a string in half because
b is irreversible
c is a cheical and d is also a chemical change