Answer:
The torque about his shoulder is 34.3Nm.
The solution approach assumes that the weight of the boy's arm acts at the center of the boy's arm length 35cm from the shoulder.
Explanation:
The solution to the problem can be found in the attachment below.
You would weigh 58.967 kilograms
The speed of the car at the top of the hill is 14m/s
<u>Explanation:</u>
given that
Initial velocity u of the car=0 m/s
The distance can be determined by finding out the difference between the elevation of the first slope and second slope.
elevation of the first slope=26 m
elevation of second slope=16m
distance s=26-16=10 m
acceleration due to gravity g=9.8 m/s2
speed of the car at the top of the hill can be determined by using the equation

speed of the car at the top of the hill is 14m/s
Answer:
The second law of a vibrating string states that for a transverse vibration in a stretched string, the frequency is directly proportional to the square root of the string's tension, when the vibrating string's mass per unit length and the vibrating length are kept constant
The law can be expressed mathematically as follows;

The second law of the vibrating string can be verified directly, however, the third law of the vibrating string states that frequency is inversely proportional to the square root of the mass per unit length cannot be directly verified due to the lack of continuous variation in both the frequency, 'f', and the mass, 'm', simultaneously
Therefore, the law is verified indirectly, by rearranging the above equation as follows;

From which it can be shown that the following relation holds with the limits of error in the experiment
m₁·l₁² = m₂·l₂² = m₃·l₃² = m₄·l₄² = m₅·l₅²
Explanation: