Answer:
1.02 × 10⁶ g
Explanation:
Step 1: Given data
- Volume of the balloon (V): 5400 m³
- Absolute pressure (P): 1.10 × 10⁵ Pa
- Molar mass of He (M): 4.002 g/mol
Step 2: Convert "V" to L
We will use the conversion factor 1 m³ = 1000 L.
5400 m³ × 1000 L/1 m³ = 5.400 × 10⁶ L
Step 3: Convert "P" to atm
We will use the conversion factor 1 atm = 101325 Pa.
1.10 × 10⁵ Pa × 1 atm / 101325 Pa = 1.09 atm
Step 4: Calculate the moles of He (n)
We will use the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.09 atm × 5.400 × 10⁶ L / 0.08206 atm.L/mol.K × 280 K
n = 2.56 × 10⁵ mol
Step 5: Calculate the mass of He (m)
We will use the following expression.
m = n × M
m = 2.56 × 10⁵ mol × 4.002 g/mol
m = 1.02 × 10⁶ g
Answer:
just see it it will help trust me its my school work
Explanation:
The original results have not been replicated consistently and reliably.
1. A mixture of ammonium chloride, sand, and zinc chloride should be separated by sublimation.
2. A mixture of zinc chloride and silver chloride should be separated through crystallization.
<h3>What is a separation technique?</h3>
A separation technique can be defined as a technique that is typically used to separate or convert two (2) or more mixture and solution of chemical substances into distinct product such as chemical compounds or elements.
<h3>The types of
separation technique.</h3>
In Chemistry, there are various types of separation technique used for the separation of mixtures or solutions and these include:
In this scenario, the most effective and efficient means to separate a mixture of ammonium chloride, sand, and zinc chloride is by sublimation from solid to gas state.
On the other hand, the best means to separate a mixture of zinc chloride and silver chloride is through crystallization.
Read more on crystallization here: brainly.com/question/4980962