Crazy stuff, it will bubble up and flow over
C. Tripling the length and reducing the radius by a factor of 2 is the change to a pipe would increase the conductance by a factor of 12.
<u>Explanation:</u>
As we know that the resistance is directly proportional to the length of the pipe and it is inversely proportional to the cross sectional area of the pipe.
So it is represented as,
R∝ l /A [ area is radius square]
So k is the proportionality constant used.
R = kl/A
Conductance is the inverse of resistance, so it is given as,
C= 1/R.
R₁ = kl₁ / A₁
R₂ = kl₂/A₂
R₂/R₁ = 1/12 [∵ conductance is the inverse of resistance]
= l₂A₁ / l₁A₂
If we chose l₁/l₂= 3 and A₂/A₁= 4 So R₂/R₁= 1/3×4 = 1/12
So tripling the length and reducing the radius by a factor of 2 would increase the conductance by a factor of 12.
A bottle.I has a neck and but a head
As,
5471 kJ heat is given by = 1 mole of Octane
Then,
5310 kJ heat will be given by = X moles of Octane
Solving for X,
X = (5310 kJ × 1 mol) ÷ 5471 kJ
X = 0.970 moles of Ocatne
So, 0.970 moles of Octane will liberate 5310 kJ energy. Now changing moles to mass,
As,
Moles = mass / M.mass
Or,
Mass = Moles × M.mass
Putting values,
Mass = 0.970 mol × 114.23 g/mol
Mass = 110.83 g of Octane