Answer:
Red
Explanation:
Red is a colour which has the lowest frequency. Violet has the highest frequency. Frequency has a direct relationship with energy. This means the higher the frequency, the higher the energy. Red has the lowest energy of all the colors too.
The frequency and Energy has an inverse relationship with the wavelength.
However Red has the longest wavelength of about 620 - 780 nanometer.
Negative
Because the car is moving up and the bug is moving down. but it also depends on the weather so choice between one of those two I think is Negative but I may be wrong.
<span>Most low-level radioactive waste (LLW) is typically sent to land-based disposal immediately following its packaging for long-term management. This means that for the majority (~90% by volume) of all of the waste types produced by nuclear technologies, a satisfactory disposal means has been developed and is being implemented around the world.
</span>
Radioactive wastes are stored so as to avoid any chance of radiation exposure to people, or any pollution.The radioactivity of the wastes decays with time, providing a strong incentive to store high-level waste for about 50 years before disposal.Disposal of low-level waste is straightforward and can be undertaken safely almost anywhere.Storage of used fuel is normally under water for at least five years and then often in dry storage.<span>Deep geological disposal is widely agreed to be the best solution for final disposal of the most radioactive waste produced.
</span>I suggest this site on this subject http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/storage-and-dispo...
Answer:
Explanation:
Given
mass of box 
speed of box 
distance moved by the box 
coefficient of kinetic friction 
Friction force 


Kinetic Energy of box will be utilize to overcome friction and rest is stored in spring in the form of elastic potential energy




Answer:

Explanation:
We have:
diameter of the wheel, 
weight of the wheel, 
mass of hanging object to the wheel, 
speed of the hanging mass after the descend, 
height of descend, 
(a)
moment of inertia of wheel about its central axis:



