1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
2 years ago
11

A bullet is fired horizontally at a height of 1.3 meters and a velocity of 950 m/s. How long was the bullet in the air?

Physics
1 answer:
seropon [69]2 years ago
3 0

Answer:

<em>The bullet was 0.52 seconds in the air.</em>

Explanation:

<u>Horizontal Motion </u>

It occurs when an object is thrown horizontally with a speed v from a height h.

The object describes a curved path ruled exclusively by gravity until it hits the ground.

To calculate the time the object takes to hit the ground, we use the following equation:

\displaystyle t=\sqrt{\frac{2y}{g}}

Note it doesn't depend on the initial velocity but on the height.

The bullet is fired horizontally at h=1.3 m, thus:

\displaystyle t=\sqrt{\frac{2\cdot 1.3}{9.8}}

\displaystyle t=\sqrt{\frac{2.6}{9.8}}

t = 0.52 s

The bullet was 0.52 seconds in the air.

You might be interested in
Is the expression "The bigger they are, the harder they fall" a generally true statement since, in the absence of air resistance
lions [1.4K]
No, because in oxygen depraved rooms, if you drop a feather and a bowling ball at the same height and time, they will fall at the same speed and have the same amount of impact.
6 0
3 years ago
Read 2 more answers
An object is five focal lengths from a concave mirror.how do the object and image heights compare?
enot [183]

An object distance is presented as s = 5f and we know that the mirror equation relates the image distance to the object distance and the focal length.

The mirror equation is 1/f = 1/s + 1/s’ where the variable f stands for the focal length of the mirror. Variable (s) represents the distance between the mirror surface and the object and the variable <span>(s’) represents the distance between the mirror surface and the image. </span>

In addition, a concave mirror will have a positive focal length (f) and a convex mirror will have a negative focal length (f).

Now, we then have 1/f = 1/5f + 1/s’ which is s’ = 5f/4

Then we get the magnification ratio that expresses the size or amount of magnification or reduction of the object or image and to get the magnification, we use this equation: M= s’/s

M= 5f/4x5f

s’ = 1/4s

Therefore, the image height is one fourth of the object height

7 0
3 years ago
15) What is the frequency of a pendulum that is moving at 30 m/s with a wavelength of .35 m?
____ [38]

A pendulum is not a wave.

-- A pendulum doesn't have a 'wavelength'.

-- There's no way to define how many of its "waves" pass a point
every second.

--  Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.

-- The frequency of a pendulum depends only on the length
of the string from which it hangs.


If you take the given information and try to apply wave motion to it:

             Wave speed = (wavelength) x (frequency)

             Frequency  =  (speed) / (wavelength) ,

you would end up with

             Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz

Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ?     That's pretty absurd. 

This math is not applicable to the pendulum.

6 0
2 years ago
A biker pedals hard for 3 seconds. What is his initial velocity if he accelerated by 4m/s2 until he's going 20m/s. (Which equati
____ [38]

Answer:

answer is option 4

Explanation:

you have to use option 4 because u need to find out initial velocity (Vi)

4 0
2 years ago
(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Sup
KengaRu [80]

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx

Where

x_{o}, x_{f} - Initial and final position, respectively, measured in meters.

F(x) - Force as a function of position, measured in newtons.

Given that F = k\cdot x and the fact that F = 25\,N when x = 0.3\,m - 0.2\,m, the spring constant (k), measured in newtons per meter, is:

k = \frac{F}{x}

k = \frac{25\,N}{0.3\,m-0.2\,m}

k = 250\,\frac{N}{m}

Now, the work function is obtained:

W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx

W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]

W = 0.313\,J

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be r(\theta) = 2\cdot \sin 5\theta. The area of the region enclosed by one loop of the curve is given by the following integral:

A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta

A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta

By using trigonometrical identities, the integral is further simplified:

A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta

A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta

A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta

A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)

A = 4\pi

The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

5 0
2 years ago
Other questions:
  • What is a voltage source
    13·1 answer
  • What type of front usually brings thunder clouds and storms
    12·2 answers
  • Which statement about the spectrum of light that emerges from a prism is true?
    10·2 answers
  • If you know the amplitude of a wave, you know the distance from
    8·2 answers
  • A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It ta
    14·1 answer
  • Determina el trabajo realizado al desplazar un bloque 3 m sobre una superficie horizontal, si se desprecia la fricción y la fuer
    10·1 answer
  • A jeweler needs to electroplate gold onto a bracelet using an ionic solution. He knows that the charge carriers in the ionic sol
    9·1 answer
  • Mark all the units for speed
    7·1 answer
  • HELP!! What propeller design gives off the most air??
    13·1 answer
  • assuming birdman flies at a speed of 22 m/s how high should birdman fly to hit the bucket if the bucket is placed 92 m from the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!