Answer:
m = F/a = 50 / 1.2 = 41.6666.... 42 kg
Explanation:
Answer:
Shape of the object
Explanation:
This depends on the shape of the object. For a spherical object, a unitless value of 0.47 is typical. The magnitude of the velocity squared. The faster you go, the greater the air resistance force
<span>#1
“A persons body continuing to move forward even though the car comes to
a sudden stop” Which newtons Law Do they pertain?
A: First Law </span>
<span>#2 “A fighter Pilot Feels Massive Amounts of forcé when his plane turns sharply” Which Newton Law?
A: First Law.
</span><span><span>You were following the
Newton's first law and kept your velocity straight until you departed from linear motion when you turn sharply; you are forced to follow the curve. <span>The
force that the jet exerts on you is called centripetal force and is
suitable for the center of curvature of the forced traveling path.</span></span>
</span><span>#3 “ A Paddle wheel boat pushed on water and the water pushes back causing the boat to move” Which Netwons Law?
C: Third Law</span>
Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
Answer:
P = 450 J
Explanation:
Given that,
Mass of a child, m = 18 kg
The vertical distance from the top to the bottom of the slide is 2.5 metres.
The Gravitational field strength = 10 N/kg
We need to find the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.
The formula for the gravitational potential energy is given by :
P = mgh
Substituting all the values,
P = 18 kg × 10 m/s² × 2.5 m
P = 450 J
Hence, the decrease in gravitational potential energy is 450 J.