Answer:
<em>Velocity is the rate at which the position changes</em>
<em>Velocity is the rate at which the position changesWhy do we need</em>
<em>Velocity is the rate at which the position changesWhy do we needVectors make it convenient to handle quantities going in different directions</em><em>.</em><em>.</em><em> </em>
Explanation:
Thank you!
I am attaching the rest of your question so it makes sense,
<span>
Since lasers are made from stacking light waves that add together into a larger wave due to CONSTRUCTIVE INTERFERENCE.
</span>
Then, <span>light waves have that constructive interference (from question #1) because they are emitted IN PHASE with each other.
This means that they arrive at the same point of space with the same characteristics and their effects do not cancel each other, but the opposite, their intensity increases.</span>
Answer:
The elements are grouped into the different substances by color. As you can see, Lithium, Beryllium, Sodium, Magnesium, Aluminum, Potassium, and Calcium are metals out of the first 20 elements.
Hydrogen, Helium, Carbon, Nitrogen, Oxygen, Fluorine, Neon, Phosphorus, Sulfur, Chlorine, and Argon, are non-metals within the first 20 elements.
Boron and Silicon count as Metalloids in the Periodic Table (properties of both metals and non-metals)
reference- socatric q and a
Explanation:
Answer:

Explanation:
From the question we are told that:
Crane Length 
Crane Mass 
Arm extension at lifting end 
Arm extension at counter weight end 
Load 
Generally the equation for Torque Balance is mathematically given by



Missing question in the text:
"A.What are the magnitude and direction of the electric field at the point in question?
B.<span>What would be the magnitude and direction of the force acting on a proton placed at this same point in the electric field?"</span>
<span>Solution:
A) A charge q </span>under an electric field of intensity E will experience a force F equal to:

In our problem we have
and
, so we can find the magnitude of the electric field:

The charge is negative, therefore it moves against the direction of the field lines. If the force is pushing down the charge, then the electric field lines go upward.
B) The proton charge is equal to

Therefore, the magnitude of the force acting on the proton will be

And since the proton has positive charge, the verse of the force is the same as the verse of the field, so upward.