The number of moles present in the FeSO4 are 0.055 mol.
<u>Explanation:</u>
- The mass of a substance containing the same number atoms in 12.0 g of 12C is known as mole. One mole of any substance is equal to 6.023 x 10^23. The moles of a substance can be determined by using the formula,
Number of moles = mass in grams / molecular mass
Given,
mass = 8.36 g,
molecular mass of FeSO4 = 151.908 g / mol
number of moles = 8.36 / 151.908
= 0.055 mol.
Answer:
Glycogen. Cellulose. Amylose. Cellulose. Amylopetin and Glycogen. Amylopetin and Cellulose.
Explanation:
Glycogen is the form that glucose is stored in human body.
Cellulose is the structural part of plant cell walls and human cannot digest it.
Amylose is the polysaccharide linked mainly by the the bonds of
1,4 glycosidic.
Cellulose is an unbranched polysaccharide linked mainly by the bonds of
1,4 glycosidic.
Amylopetin and Glycogen are branched polysaccharides linked by the bonds of
1,4 glycosidic and
1,6 glycosidic.
Amylopetin and Cellulose are mainly stored in plants.
Answer:
2Ag(s) + Cu^2+(aq) ----------> 2Ag^+(aq) + Cu(s)
Explanation:
Ag(s)/Ag^+ (aq) is the anode as shown while Cu^2+(aq)/Cu^2(s) is the cathode.
E°cell= E°cathode -E°anode= 0.34 -0.80= -0.5V
The cell is not spontaneous as written because E°cell is negative. This implies that the electrodes of the cell must be interchanged to make the cell spontaneous.
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
Ice caps so it would be D
Hope it helps :-)