Answer:
Energy is neither created nor destroyed.
Explanation:
The law of conservation of energy states that energy can neither be created nor be destroyed. The total energy of an isolated system remains conserved. It never gets 0. It changes from one form of energy to other but never vanishes.
Hence, the correct option is (d) "Energy is neither created nor destroyed"
There are 3 Barium, 2 Phosphorus and 8 Oxygen in Barium Phosphate (Ba3(PO4)2, making 13 units. Multiply 0.0350 mol given by 13 and then you get 0.455 mol. Since they want atoms, multiply 0.455 by Avogadro's number (0.455 x 6.023 x 1023) and you get 2.74 atoms of barium phosphate.
Answer:
pH of the H⁺(aq) is 0
Explanation:
It is possible to know the concentration of a HCl(aq) solution by titration with a solution of NaOH(aq) with known concentration. The reaction is:
HCl(aq) + NaOH(aq) → H₂O(l) + NaCl(aq)
The added moles of NaOH are equal to moles of HCl and as you know volume of HCl added you will obtain concentration of HCl.
Now, a solution of H⁺(aq) with a concentration 10 times greater than original NaOH(aq) solution -0.100M-, has a concentration of 1.00M H⁺(aq), the pH of this solution is:
pH = -log (1.00M H⁺(aq) = 0
That means <em>pH of the H⁺(aq) is 0</em>
Answer:
15.3 %
Explanation:
Step 1: Given data
- Mass of the sample (ms): 230 g
- Mass of carbon (mC); 136.6 g
- Mass of hydrogen (mH): 26.4 g
- Mass of nitrogen (mN): 31.8 g
Step 2: Calculate the mass of oxygen (mO)
The mass of the sample is equal to the sum of the masses of all the elements.
ms = mC + mH + mN + mO
mO = ms - mC - mH - mN
mO = 230 g - 136.6 g - 26.4 g - 31.8 g
mO = 35.2 g
Step 3: Calculate the mass percent of oxygen
%O = (mO / ms) × 100% = (35.2 g / 230 g) × 100% = 15.3 %
Answer:
sulfur will have a chafge of -2 and Lithium will have a charge of +1