Answer:
0.8m/s
Explanation:
Weight of mas,F=763 N
Mass of man=
By using 
Weight of flatcar=F'=3513 N
Mass of flatcar=
Total mass of the system=Mass of man+mass of flatcar=77.86+358.5=436.36 kg
Velocity of system=19.8m/s
Let v be the velocity of flatcar with respect to ground
Velocity of man relative to the flatcar=
Final velocity of man with respect to ground=v-4.68
By using law of conservation of momentum
Initial momentum=Momentum of car+momentum of flatcar






Initial speed of flatcar=Speed of system
Increase in speed=Final speed-initial speed=20.6-19.8=0.8m/s
To solve this problem, we must take two important steps. First we will convert all the given units, to international system. Later we will define the torque, which is given as the product between the radius of application of the force and the Force acting on the body. Mathematically the latter is,

Here,
r = Radius
F = Force
Now the units,

Replacing,


Therefore the torque that the muscle produces on the wrist is 
The color green is the the color of light in the visible spectrum which appears the brightest, but with proper illumination, the color green-yellow appears to be the brightest, with the human eye having the maximum sensitivity of 555nn
Answer:
Explanation: It would go straight because objects in motion stay in motion and it would stay the same direction
<span>The work done is 3.0 Nm.
We can us the equation Work = Force * Distance, where Force = 75.0 N, and distance is xf – xi = 3.00 cm - -1.00 cm = 4.00 cm. Convert centimeters to meters by moving the decimal place to the left by two places to get 0.04 m. Plug these values into the Work equation:
Work = Force * Distance
Work = 75.0 N * 0.04 m
Work = 3.0 Nm</span>