Answer:
21.8 m/s
Explanation:
At the top of the hill (crest), there are two forces acting on the motorcycle:
- The reaction force of the road, N (upward)
- The force of gravity, mg (downward)
Since the motorcycle is moving by circular motion, the resultant of these forces will give the centripetal force, so:

where the direction of the weight (mg) is equal to that of the centripetal force, and where
m is the mass of the cycle
g = 9.8 m/s^2 is the acceleration of gravity
v is the speed
r = 48.6 is the radius of the hill
The cycle loses contact with the road when the reaction force becomes zero:
N = 0
Substituting into the equation, we therefore find the maximum speed that is allowed for the cycle before losing constact:

Answer:
0.82 m
Explanation:
The ball is in free fall - uniform accelerated motion with constant acceleration downward,
(acceleration of gravity). So we can use the following suvat equation to solve the problem:

where
v is the final velocity
u = 4 m/s is the initial velocity
a is the acceleration
s is the displacement
At the maximum displacement, v = 0 (the velocity becomes zero). Substituting and solving for s, we find:

Answer;
- No, Two vectors of unequal magnitude can never sum to zero.
Explanation;
-Two vectors of equal magnitude that are pointing in opposite directions will sum to zero.
-Two vectors of unequal magnitude can never sum to zero. If they point along the same line, since their magnitudes are different, the sum will not be zero.
- If they point in different directions, then you can always decompose one vector into two components: one along the other vector and one perpendicular to the other vector. In this case, the perpendicular component can never be eliminated.
It must be either speeding up, or slowing down, or turning. There are no other possibilities.
Answer:
It makes sense because on that the day the sun stops moving northward and starts moving southward
Explanation: