I'll just give you the link for it but count it as my answer. http://www.differencebetween.com/difference-between-leptons-and-vs-hadrons/
Answer:
Explanation:
We shall apply conservation of mechanical energy
kinetic energy of alpha particle is converted into electric potential energy.
1/2 mv² = k q₁q₂/d , d is closest distance
d = 2kq₁q₂ / mv²
= 2 x 9 x 10⁹ x 79e x 2e / 4mv²
= 1422 x2x (1.6 x 10⁻¹⁹)² x 10⁹ /4x 1.67 x 10⁻²⁷ x (1.5 x 10⁷)²
= 3640.32 x 10⁻²⁹ /2x 3.7575 x 10⁻¹³
= 484.4 x 10⁻¹⁶
=48.4 x 10⁻¹⁵ m
I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
Given the distance traveled and time elapsed, the average speed of the train is approximately 26.944m/s.
<h3>What is the average speed of the train?</h3>
Speed is simply referred to as distance traveled per unit time.
Mathematically, Speed = Distance ÷ time.
Given the data in the question;
- Distance traveled = 221miles
- Elapsed time = 3 hours and 40 minutes
First we convert miles to meters and Hours minutes to seconds.
221 miles = ( 221 × 1609.344 )m = 355665.024 meters
3 hours and 40 minutes = ( 3×60×60)s + ( 40×60)s
= 10800s + 2400s
= 13200s
Now, determine the average speed.
Speed = Distance ÷ time
Speed = 355665.024m / 13200s
Speed = 26.944m/s
Given the distance traveled and time elapsed, the average speed of the train is approximately 26.944m/s.
Learn more about speed here: brainly.com/question/7359669
#SPJ1