We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
Well for starters, gravity keeps things down on Earth. Also, gravity applies its force on to cars to maintain stability by forcing the tires to make constant contact to the ground creating friction between the rubber and road surface allowing the car to be moved. I'm sure someone else has better ideas!
<span>It's called an electric current</span>
Water boiling, no cheamical bonds have been altered.
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.