1). Walking / Driving
If there were no static friction between the soles of your shoes and the ground, then you could move your feet back and forth but your body would never go anywhere.
Same for using tires to move a car, a bus, a bicycle or a motorcycle.
2). Sleeping
If there were no static friction between your jammies and the sheet, you would slide right off of the bed whenever there was the slightest breeze of air in the room.
Answer:
12.74 ms^-1 download
Explanation:
v=28.2, a=9.81
start from rest u=0
v=u+at=0+(9.81)t=28.2
t=2.875...
it reach 1.4 second before hitting the ground:
t=1.4, u=0, a=9.81
v=u+at=0+(9.81)(1.4)=12.74
According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
The most common one is junk food and sugary snacks are very very addicting! they are almost like drugs!!!
Answer:
1. Least massive stars are the coolest and least luminous, lower right of main sequence, on HR diagram.
2. Most massive are the hottest and most luminous, upper left of main sequence on Hr Diagram.
3. The radius of stars are related to their sprectral type. having the O being the hottest upper left and M being the coolest bottom right.