Answer: c) they have low genetic variability among them.
When a plant is grown for several generations of offspring of a plant, then there are some common things which are to be noted which are found similar in the offspring and in the parent of the offspring. The flowers and fruits and the time or season they come in are absolutely the same.
Answer:
Volume of face centered cubic cell=
Explanation:
Consider the face centered cubic cell:
1 atom at each corner of cube.
1 atom at center of each face.
Consider the one face (ABCD) as shown in attachment for calculation:
Length of the all sides of face centered cubic cell is L.
Volume of face centered cubic cell= L^3
Now Consider the figure shown in attachment:
According to Pythagoras theorem on ΔADC.
(a is the atomic radius)
(Put in the formula of Volume)
Volume of face centered cubic cell= L^3
Volume of face centered cubic cell= 
Volume of face centered cubic cell= 
Volume of face centered cubic cell=
Answer:
B A and C
Explanation:
Given:
Specimen σ
σ
A +450 -150
B +300 -300
C +500 -200
Solution:
Compute the mean stress
σ
= (σ
+ σ
)/2
σ
= (450 + (-150)) / 2
= (450 - 150) / 2
= 300/2
σ
= 150 MPa
σ
= (300 + (-300))/2
= (300 - 300) / 2
= 0/2
σ
= 0 MPa
σ
= (500 + (-200))/2
= (500 - 200) / 2
= 300/2
σ
= 150 MPa
Compute stress amplitude:
σ
= (σ
- σ
)/2
σ
= (450 - (-150)) / 2
= (450 + 150) / 2
= 600/2
σ
= 300 MPa
σ
= (300- (-300)) / 2
= (300 + 300) / 2
= 600/2
σ
= 300 MPa
σ
= (500 - (-200))/2
= (500 + 200) / 2
= 700 / 2
σ
= 350 MPa
From the above results it is concluded that the longest fatigue lifetime is of specimen B because it has the minimum mean stress.
Next, the specimen A has the fatigue lifetime which is shorter than B but longer than specimen C.
In the last comes specimen C which has the shortest fatigue lifetime because it has the higher mean stress and highest stress amplitude.