Answer:
The resultant molarity is 0,7 M.
Explanation:
A dilution consists of the decrease of concentration of a substance in a solution (the higher the volume of the solvent, the lower the concentration).
We use the formula for dilutions:
C1 x V1 = C2 x V2
3,5 M x 20 ml= C2 x 100ml
C2= (3,5 M x 20 ml)/100ml
<em>C2= 0,7M</em>
Answer:
0.56 g
Explanation:
<em>A chemist determines by measurements that 0.020 moles of nitrogen gas participate in a chemical reaction. Calculate the mass of nitrogen gas that participates.</em>
Step 1: Given data
Moles of nitrogen gas (n): 0.020 mol
Step 2: Calculate the molar mass (M) of nitrogen gas
Molecular nitrogen is a gas formed by diatomic molecules, whose chemical formula is N₂. Its molar mass is:
M(N₂) = 2 × M(N) = 2 × 14.01 g/mol = 28.02 g/mol
Step 3: Calculate the mass (m) corresponding to 0 0.020 moles of nitrogen gas
We will use the following expression.
m = n × M
m = 0.020 mol × 28.02 g/mol
m = 0.56 g
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
B. The Secondary side of the step down transformer.
Answer: Salt and Water
Explanation:
An Arrhenius acid (HCl) can best be defined as any substance that when added to water increases the concentration of H+ ions.
While an Arrhenius base (KOH) is any substance that when added to water increases the concentration of OH- ions.
When an Arrhenius acid such as HCl reacts with an Arrhenius base such as KOH, the end products will be salt and water, in a process called Neutralization Reaction.
HCl (aq) + KOH (aq) -------> KCl (aq) + H2O (l)