We are given a series circuit with two light bulbs. In this case, the light bulbs act as resistors in series and the total resistance is:

That is the sum of all the resistances in series in the circuit. To determine the voltage we can use Ohm's law:

Where "R" is the total resistance and "I" is the current in the circuit. Replacing we get:
Answer:
A) Average speed = 18.75 m/s
B) More time is spent at 15 m/s than at 25 m/s.
Explanation:
Let the first distance be d1 and the second distance be d2.
We are given;
d1 = 10 km = 10000 m
d2 = 10 km = 10000 m
Speed; v1 = 15 m/s
Speed; v2 = 25 m/s
Now, the formula for distance is; Distance = speed x time
Thus:
d1 = v1 x t1
t1 = d1/v1 = 10000/15 = 666.67 seconds
Also,
d2 = v2 x t2
t2 = d2/v2 = 10000/25 = 400 seconds
Average speed = total distance/total time = (10000 + 10000)/(666.67 + 400) = 18.75 m/s
From earlier, since t1 = 666.67 seconds and t2 = 400 seconds, then;
More time at 15 m/s than at 25 m/s.
Answer:
The lowest possible frequency of sound for which this is possible is 1307.69 Hz
Explanation:
From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.
First, we will determine his distance from the second speaker using the Pythagorean theorem
l₂ = √(2.00²+5.00²)
l₂ = √4+25
l₂ = √29
l₂ = 5.39 m
Hence, the path difference is
ΔL = l₂ - l₁
ΔL = 5.39 m - 5.00 m
ΔL = 0.39 m
From the formula for destructive interference
ΔL = (n+1/2)λ
where n is any integer and λ is the wavelength
n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.
Then,
0.39 = (1+ 1/2)λ
0.39 = (3/2)λ
0.39 = 1.5λ
∴ λ = 0.39/1.5
λ = 0.26 m
From
v = fλ
f = v/λ
f = 340 / 0.26
f = 1307.69 Hz
Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.
3 is the answer to your question
Explanation:
The kinetic energy is said to be possessed due to the motion of the object. An object at rest will have zero kinetic energy and if it is in motion it will have some kinetic energy. The mathematical expression for kinetic energy is given by :
...........(1)
Where
m is the mass of the object
v is the velocity of object
It is clear form expression (1) that the kinetic energy of the object is directly proportional to the mass and velocity of an object.
So, the hypothesis for the mass and kinetic energy can be written as " when the mass of the object increases, its kinetic energy also increases because there exists a direct relationship between the mass and the kinetic energy of the object".