In NH4OH, the compounds that make it up are NH4+ and OH-
Therefore N exists in the ammonium form.
In the ammonium ion 4H atoms are connected to N.
N is more electronegative than H, therefore when H bonds to N, H is the more positive atom therefore each H has a charge of +1, since there are 4 H atoms the charge contributed by the 4H atoms are +1 * 4 = +4
the overall charge of NH4 is +1
Charge of N (+) +4 = +1
Charge of N = +1 - 4
Therefore oxidation state of N in NH4 is = -3
The number of atoms present in carbon, specifically Carbon-12, is the number of atoms present in 1 gram of the substance. One moles of the substance weighs approximately 12.01 g/mole. The unit suggests that every mole of carbon weighs 12.01 grams.
If you can’t figure it out You should l look it up in the internet
This is an acid base reaction and the chemical equation for the above reaction is as follows;
KOH + HClO₄ ---> KClO₄ + H₂O
the stoichiometry of acid to base is 1:1
KOH is a strong base and HClO₄ is a strong acid therefore they both ionize completely into their respective ions
Number of KOH moles - 0.723 M/1000 mL/L x 25.0 mL = 0.018 mol
Number of HClO₄ moles - 0.273 M/1000 mL/L x 50 mL = 0.013 mol
since acid and base react completely, 0.013 mol of acid reacts with 0.013 mol of base.
The excess base remaining is - 0.018 - 0.013 = 0.005 mol
total volume of solution = 25.0 mL + 50.0 mL = 75.0 mL
[OH⁻] = 0.005 mol/0.075 L = 0.067 M
pOH = -log[OH⁻]
pOH = -log(0.067 M)
pOH = 1.17
pOH + pH = 14
Therefore pH = 14 - 1.17 = 12.83
by knowing pH we can calculate the [H₃O⁺]
pH = -log [H₃O⁺]
[H₃O⁺] = antilog[-12.83]
[H₃O⁺]= 1.47 x 10⁻¹³ M
Answer: 0.462 moles
Explanation: 13C indicates an isotope of carbon and its mass number is 13. It means the mass of 1 mol of 13C is 13 gram.
The question asks to calculate the number of atoms present in 6.00 grams of 13C.
To calculate the number of moles we divide the given grams by the mass of 1 mol of the element. The set could be shown easily using dimensional analysis as:

= 0.462 moles
So, there will be 0.462 moles of atoms in 6.00 grams of 13C.