Answer:
Ka = 1.39x10⁻⁶
Explanation:
A monoprotic acid, HX, will be in equilibrium in an aqueous medium such as:
HX(aq) ⇄ H⁺(aq) + X⁻(aq)
<em>Where Ka is:</em>
Ka = [H⁺] [X⁻] / [HX]
<em>Where [] is the molar concentration in equilibrium of each specie.
</em>
The equilibrium is reached when some HX reacts producing H+ and X-, that is:
[HX] = 1.64M - X
[H⁺] = X
[X⁻] = X
As pH is 2.82 = -log [H⁺]:
[H⁺] = 1.51x10⁻³M:
[HX] = 1.64M - 1.51x10⁻³M = 1.638M
[H⁺] = 1.51x10⁻³M
[X⁻] = 1.51x10⁻³M
And Ka is:
Ka = [1.51x10⁻³M] [1.51x10⁻³M] / [1.638M]
<h3>Ka = 1.39x10⁻⁶</h3>
Answer:
A reaction that combines simpler reactants to form a new compound is called a
<h2>Synthesis reaction.</h2>
Answer:
Your stomach lining also secretes hydrochloric acid, which creates the ideal conditions for the protein-digesting enzymes to work. The potent hydrochloric acid kills bacteria, protecting your body from harmful microbes which can enter your body in food.
B. positive because y increases as x does. It it were negative y would decrease as x increases and it would be 0 if y stayed the same as x increases.
Answer:
Explanation:
<u>1. Word equation:</u>
- <em>mercury(II) oxide → mercury + oxygen </em>
<u>2. Balanced molecular equation:</u>
<u>3. Mole ratio</u>
Write the ratio of the coefficients of the substances that are object of the problem:

<u>4. Calculate the number of moles of O₂(g)</u>
Use the equation for ideal gases:

<u>5. Calculate the number of moles of HgO</u>

<u>6. Convert to mass</u>
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g