Answer:
0.1 L
Explanation:
From the question given above, we obtained the following data:
Initial volume (V₁) = 0.05 L
Initial Pressure (P₁) = 207 KPa
Final pressure (P₂) = 101 KPa
Final volume (V₂) =?
We can obtain the new volume (i.e the final volume) of the gas by using the Boyle's law equation as illustrated below:
P₁V₁ = P₂V₂
207 × 0.05 = 101 × V₂
10.35 = 101 × V₂
Divide both side by 101
V₂ = 10.35 / 101
V₂ = 0.1 L
Thus, the new volume of the gas is 0.1 L
Considering the Coulomb's Law, the magnitude of the Coulomb force is 3.1865 N.
<h3>Coulomb's Law</h3>
Charged bodies experience a force of attraction or repulsion on approach.
From Coulomb's Law it is possible to predict what the electrostatic force of attraction or repulsion between two particles will be according to their electric charge and the distance between them.
From Coulomb's Law, the electric force with which two point charges at rest attract or repel each other is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

where:
- F is the electrical force of attraction or repulsion. It is measured in Newtons (N).
- Q and q are the values of the two point charges. They are measured in Coulombs (C).
- d is the value of the distance that separates them. It is measured in meters (m).
- K is a constant of proportionality called the Coulomb's law constant. It depends on the medium in which the charges are located. Specifically for vacuum k is approximately 9×10⁹
.
The force is attractive if the charges are of opposite sign and repulsive if they are of the same sign.
<h3>This case</h3>
In this case, you know that:
- The two uncharged sphere are separated by the distance of d= 3.50 m
- The number of electrons are 1.30×10¹².
- Electrons is elementary charge and charges on both the sphere is same. The value of electron is 1.602×10⁻¹⁹ C. This is, Q=q=1.30×10¹²×1.602×10⁻¹⁹ C= 2.0826×10⁻⁷ C
Replacing in Coulomb's Law:

Solving:
<u><em>F= 3.1865 N</em></u>
Finally, the magnitude of the Coulomb force is 3.1865 N.
Learn more about Coulomb's Law:
brainly.com/question/26892767
#SPJ1
Answer:
Normal Force is usually perpendicular to the movement and static friction usually means that there is no movement.
Explanation:
The work donde by any force on an object is equal to the displacement of the object multiplied by the component of the force that is in the direction of the displacement.
Normal force is usually perpendicular to the movement, so there is no component in the direction of the displacement. This is why it is zero in most circumstances.
<em>Static</em> friction on the other hand, usually means that there is no movement at all (it's static). It means that there is no displacement between the object and ground (in most cases). If there is no displacement, there is no work.
Hi there!
Recall the equation for electric potential of a point charge:

V = Electric potential (V)
k = Coulomb's Constant(Nm²/C²)
Q = Charge (C)
r = distance (m)
We can begin by solving for the given electric potentials. Remember, charge must be accounted for. Electric potential is also a SCALAR quantity.
Upper right charge's potential:

Lower left charge's potential:

Add the two, and subtract from the total EP at the point:

The remaining charge must have a potential of 2036.25 V, so:

Answer:

Explanation:
From the question we are told that:
Speed of light 
Generally the equation for Average Speed is mathematically given by

Where
d=Distance between the Earth and the sun

Therefore



Since m and n is given in the form of

Therefore

