Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
The disturbance does not have a specific motions
Correct answer choice is:
D. A continuous transmission of energy from one location to the next.
Explanation:
Waves include the carrier of energy without the carrier of matter. In outcome, a wave can be characterized as a change that progresses into a medium, carrying energy from one spot (its source) to different spot without carrying matter.
We have that for the Question "Write an expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e" it can be said its equation is
From the question we are told
Write an expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e
<h3>An E
xpression for the <em>magnitude </em>of charge moved</h3>
Generally the equation for the <em>magnitude </em>of charge moved, Q is mathematically given as
Therefore
An expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e" it can be
For more information on this visit
brainly.com/question/16517842
Answer:
The maximum height reached by the body is 313.6 m
The time to return to its point of projection is 8 s.
Explanation:
Given;
initial velocity of the body, u = 78.4 m/s
at maximum height (h) the final velocity of the body (v) = 0
The following equation is applied to determine the maximum height reached by the body;
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (78.4²) / (2 x 9.8)
h = 313.6 m
The time to return to its point of projection is calculated as follows;
at maximum height, the final velocity becomes the initial velocity = 0
h = v + ¹/₂gt²
h = 0 + ¹/₂gt²
h = ¹/₂gt²
2h = gt²
t² = 2h/g