Well for question 1, the answer would be your opinion on which graph is easier to read and understand better.
for the second question. the one to get specific data would be the table chart because you can read the numbers easily rather than trying to guess on the bar chart wear the bars are actually at are kinda close to an exact number, but not really the number you were thinking
Answer:
The family in the first period is the alkali metal family.
When white light is diffracted and blue color is seen is due to the absorbance of wavelength of all other color except blue.
<u>Explanation:
</u>
- The white light diffracts into rainbow colors which are the 7 colors present in form of VIBGYOR.
- VIBGYOR is the violet, Indigo, Blue, Green, Yellow, Orange and Red.
- When the blue color is seen denotes the shortest wavelength being reflected and all other being absorbed at the specified location.
Answer:
11.28 N toward the center of the track
Explanation:
Centripetal force: This is the force that tend to draw a body close to the center of a circle, during circular motion.
The formula for centripetal force is given as,
F = mv²/r................................ Equation 1
Where F = force, m = mass of the toy car, v = velocity, r = radius
Given: m = 108 g = 0.108 kg, v = 7.75 m/s, r = 57.5 cm = 0.575 m
Substitute into equation 1
F = 0.108(7.75²)/0.575
F = 11.28 N
Hence the magnitude and direction of the force = 11.28 N toward the center of the track
Explanation:
It is given that,
Mass of the rim of wheel, m₁ = 7 kg
Mass of one spoke, m₂ = 1.2 kg
Diameter of the wagon, d = 0.5 m
Radius of the wagon, r = 0.25 m
Let I is the the moment of inertia of the wagon wheel for rotation about its axis.
We know that the moment of inertia of the ring is given by :


The moment of inertia of the rod about one end is given by :

l = r


For 6 spokes, 
So, the net moment of inertia of the wagon is :


So, the moment of inertia of the wagon wheel for rotation about its axis is
. Hence, this is the required solution.