Answer:
How to convert volts to electron-volts
How to convert electrical voltage in volts (V) to energy in electron-volts (eV).
You can calculate electron-volts from volts and elementary charge or coulombs, but you can't convert volts to electron-volts since volt and electron-volt units represent different quantities.
Volts to eV calculation with elementary charge
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electric charge Q in elementary charge or proton/electron charge (e):
E(eV) = V(V) × Q(e)
The elementary charge is the electric charge of 1 electron with the e symbol.
So
electronvolt = volt × elementary charge
or
eV = V × e
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 40 electron charges?
E = 20V × 40e = 800eV
Volts to eV calculation with coulombs
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C) divided by 1.602176565×10-19:
E(eV) = V(V) × Q(C) / 1.602176565×10-19
So
electronvolt = volt × coulomb / 1.602176565×10-19
or
eV = V × C / 1.602176565×10-19
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 2 coulombs?
E = 20V × 2C / 1.602176565×10-19 = 2.4966×1020eV
Explanation:
Answer: 5.39
Explanation: you are adding the balloon's volume and the container's volume
Answer:
MnO4- + 5 VO +2 + 11 H2O = 5 V(OH)4+ + Mn+2 + 2 H+
Explanation:
Answer:
C, 42g
Explanation:
In thermal equilibrium, both bodies (metal pellet and water) both have the same final temperature (46.3°C).
Assuming no heat is lost to surroundings,
the energy lost from metal pellet = energy gained for water
Since E = mc∆T
(energy = mass x specific heat capacity x temperature change)
mc∆T (metal pellet) = mc∆T (water)
100 x 0.568 x (116-46.3) = m 4.184 (46.3 - 23.8)
3958.96 = 94.14m
m = 42g
Answer:
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Explanation:
The balanced reaction between nitrogen and hydrogen molecules to give ammonia molecules is:

Thus one molecule of nitrogen will react with three molecules of hydrogen to give two molecules of ammonia.
We have six molecules of each nitrogen and hydrogen in the closed container and they undergo complete reaction it means the limiting reagent is hydrogen. For six molecules of nitrogen, eighteen molecules of hydrogen will be required.
So six molecules of hydrogen will react with two molecules of nitrogen to give four molecules of ammonia.
The product mixture will have
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.