Answer: 
Explanation:
In the image attached with this answer are shown the given options from which only one is correct.
The correct expression is:

Because, if we derive velocity
with respect to time
we will have acceleration
, hence:

Where
is the mass with units of kilograms (
) and
with units of meter per square seconds
, having as a result 
The other expressions are incorrect, let’s prove it:
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
and
is a constant
because
is a constant in this derivation respect to
This result has units of
and
is a constant
A neutral object contains no net charge, but still has many charged particles within the object, it just means that the charges cancel each other out.
False because opposites attract. :)
Answer:
Distance, d = 61.13 ft
Explanation:
It is given that,
Initial speed of the car, u = 50 mi/h = 73.34 ft/s
Finally, it stops i.e. v = 0
Deceleration of the car, 
We need to find the distance covered before the car comes to a stop. Let the distance is s. It can be calculated using third law of motion as :



s = 61.13 ft
So, the distance covered by the car before it comes to rest is 61.13 ft. Hence, this is the required solution.
Answer:
1 μF
Explanation:
To obtain the answer to the question, all we need to do is to calculate the equivalent capacitance of the capacitors. This can be obtained as illustrated below.
From the question given above, the following data were obtained:
Capacitor 1 (C₁) = 2 μF
Capacitor 2 (C₂) = 4 μF
Capacitor 3 (C₃) = 4 μF
Equivalent capacitance (Cₑq) =?
Cₑq = 1/C₁ + 1/C₂ + 1/C₃
Cₑq = 1/2 + 1/4 + 1/4
Cₑq = (2 + 1 + 1)/4
Cₑq = 4/4
Cₑq = 1 μF
Thus, the answer to the question is 1 μF