The impulse given to the ball is equal to the change in its momentum:
J = ∆p = (0.50 kg) (5.6 m/s - 0) = 2.8 kg•m/s
This is also equal to the product of the average force and the time interval ∆t :
J = F(ave) ∆t
so that if F(ave) = 200 N, then
∆t = J / F(ave) = (2.8 kg•m/s) / (200 N) = 0.014 s
Answer:

Explanation:
From the question we are told that
Nucleus diameter 
a 12C nucleus
Required kinetic energy 
Generally initial speed of proton must be determined,applying the law of conservation of energy we have

where
=initial kinetic energy
=final kinetic energy
=initial electric potential
=final electric potential
mathematically

where
=distance b/w charges
=nucleus charge 
=constant
=proton charge
Generally kinetic energy is know as

Therefore
Generally equation for radius is 
Mathematically solving for radius of nucleus


Generally we can easily solving mathematically substitute into v_1









Therefore the proton must be fired out with a speed of 
Multiply by (1000 meters / 1 km).
Then multiply by (1 hour / 3600 seconds).
Both of those fractions are equal to ' 1 ', because the top
and bottom numbers are equal, so the multiplications
won't change the VALUE of the 72 km/hr. They'll only
change the units.
(72 km/hour) · (1000 meters / 1 km) · (1 hour / 3600 seconds)
= (72 · 1000 / 3600) (km·meter·hour / hour·km·second)
= 20 meter/second
The object<span> is moving with a decreasing acceleration. The </span>object<span> is moving with </span>a constant<span> velocity.</span>
d=? v=2.5 u=0 and t=5 therefore the formula to be used to find the distance my brother covered is d=1/2(v-u)t
d=1/2(2.5-0)5
=6.15m