B4 the tackle:
<span>The linebacker's momentum = 115 x 8.5 = 977.5 kg m/s north </span>
<span>and the halfback's momentum = 89 x 6.7 = 596.3 kg m/s east </span>
<span>After the tackle they move together with a momentum equal to the vector sum of their separate momentums b4 the tackle </span>
<span>The vector triangle is right angled: </span>
<span>magnitude of final momentum = √(977.5² + 596.3²) = 1145.034 kg m/s </span>
<span>so (115 + 89)v(f) = 1145.034 ←←[b/c p = mv] </span>
<span>v(f) = 5.6 m/s (to 2 sig figs) </span>
<span>direction of v(f) is the same as the direction of the final momentum </span>
<span>so direction of v(f) = arctan (596.3 / 977.5) = N 31° E (to 2 sig figs) </span>
<span>so the velocity of the two players after the tackle is 5.6 m/s in the direction N 31° E </span>
<span>btw ... The direction can be given heaps of different ways ... N 31° E is probably the easiest way to express it when using the vector triangle to find it</span>
Answer:
You could move something across the Earth with a little push. It would make fuel really efficient on those pathways. You could make a floor that is impossible to walk on. Everybody would just fall without traction.
Explanation:
It has to be the last one because whenever lights are turned on it decreases because all lights are on at the same time. It's good to just have one light on. It doesn't use as much electricity.
Answer:
YES. 6√10
Explanation:
apply E=1/2mv^2 and find the velocity of carriage which is 6√10 ms-1
as our velocity is higher than that of cart. we can catch the carriage
Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s