1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Morgarella [4.7K]
3 years ago
15

Steam enters an adiabatic nozzle at 2.5 MPa and 450oC with a velocity of 55 m/s and exits at 1 MPa and 390 m/s. If the nozzle ha

s an inlet area of 6 cm2, determine (a) the exit temperature.
Engineering
1 answer:
luda_lava [24]3 years ago
4 0

Answer:

The value of exit temperature from the nozzle = 719.02 K

Explanation:

Temperature at inlet T_{1} = 450°c = 723 K

Velocity at inlet V_{1} = 55 \frac{m}{sec}

velocity at outlet V_{2} = 390 \frac{m}{sec}

Specific heat at constant pressure for steam  C_{p}  = 18723 \frac{J}{kg k}

Apply steady flow energy equation for the nozzle

h_{1} + \frac{V_{1} ^{2} }{2} = h_{2} + \frac{V_{2} ^{2} }{2}

C_{p} T_{1}  + \frac{V_{1} ^{2} }{2} = C_{p} T_{2} + \frac{V_{2} ^{2} }{2}

Put all the values in the above formula we get,

⇒ 18723 × 723 + \frac{55^{2} }{2} = C_{p} T_{2} + \frac{390^{2} }{2}

⇒   T_{2} = 719.02 K

This is the value of exit temperature from the nozzle.

You might be interested in
A 13.7g sample of a compound exerts a pressure of 2.01atm in a 0.750L flask at 399K. What is the molar mass of the compound?a. 3
Katarina [22]

Answer: Option D) 298 g/mol  is the correct answer

Explanation:

Given that;

Mass of sample m = 13.7 g

pressure P = 2.01 atm

Volume V = 0.750 L

Temperature T = 399 K

Now taking a look at the ideal gas equation

PV = nRT

we solve for n

n = PV/RT

now we substitute

n = (2.01 atm x 0.750 L) / (0.0821 L-atm/mol-K x 399 K )

= 1.5075 / 32.7579

= 0.04601 mol

we know that

molar mass of the compound = mass / moles

so

Molar Mass = 13.7 g / 0.04601 mol

= 297.7 g/mol  ≈ 298 g/mol

Therefore Option D) 298 g/mol  is the correct answer

4 0
2 years ago
Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 k
In-s [12.5K]

Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pm

<em><u>p</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>,</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

3 0
3 years ago
A 11.5 nC charge is at x = 0cm and a -1.2 nC charge is at x = 3 cm ..At what position or positions on the x-axis is the electric
diamong [38]

Answer:

Explanation:

Given

q_1=11.5\ nC charge is placed at x=0\ cm

another charge of q_2=-1.2\ nC is at x=3\ cm

We know that Electric field due to positive charge is away  from it and Electric field due to negative charge is towards it.

so net electric field is zero somewhere beyond negatively charged particle

Electric Field due to q_2 at some distance r from it

E_2=\frac{kq_2}{r^2}

Now Electric Field due to q_1 is

E_1=\frac{kq_1}{(3+r)^2}

Now E_1+E_2=0

\frac{k\times 11.5}{(r+3)^2}\frac{k\times (-1.2)}{r^2}=0

\frac{3+r}{r}=(\frac{11.5}{1.2})^{0.5}

\frac{3+r}{r}=3.095

thus r=1.43\ cm

Thus Electric field is zero at some distance r=1.43 cm right of q_2

3 0
3 years ago
When water precipitates from the sky, runs off downhill along the ground, or infiltrates down into the soil, its gravitational p
agasfer [191]

Answer:

Geothermal energy.

Explanation:

Geothermal energy is called a renewable energy source because the water is replenished by rainfall, and the heat is continuously produced by the earth.

8 0
3 years ago
QUESTION:
pentagon [3]
74 cycles it’s what u need
7 0
2 years ago
Other questions:
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    5·1 answer
  • c++ If your company needs 200 pencils per year, you cannot simply use this year’s price as the cost of pencils 2 years from now.
    9·1 answer
  • A small wind tunnel in a university’s undergraduate fluid flow laboratory has a test section that is 20 in. by 20 in. in cross s
    8·1 answer
  • If the 1550-lb boom AB, the 190-lb cage BCD, and the 169-lb man have centers of gravity located at points G1, G2 and G3, respect
    11·1 answer
  • When choosing a respirator for your job, you must conduct a _____ test.
    15·1 answer
  • Estimate the time it would take for such axons to carry a message from a foot stepping on a sharp object to the brain and then b
    14·1 answer
  • True or False; If I was trying to find the Voltage of my computer, and I was given the Watts and Amps it uses, I would use Watt'
    8·1 answer
  • Which of the following activities can help expand engineers' creative thinking capabilities?
    11·2 answers
  • I really need help i will give brainly plz no funny answers
    14·1 answer
  • 3. (5%) you would like to physically separate different materials in a scrap recycling plant. describe at least one method that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!