Each aluminium ion should have a charge of +2, because the sum of oxidation numbers must be zero.
The uncharged aluminium atom must lose two electrons to become an ion with +2 charge.
If you find some mistakes in my answer, please let me know!
Equation is as follow,
<span> 4 Na (s) + O</span>₂ <span>(g) → 2Na</span>₂<span>O (s)
According to equation,
91.92 g (4 moles) of Na produces = 123.92 g (2 moles) of Na</span>₂O
So,
17.4 g of Na will produce = X g of Na₂O
Solving for X,
X = (17.4 g × 123.92 g) ÷ 91.92 g
X = 23.45 g of Na₂O
1 valence electron in alkali metals.
Answer:
For every 4 moles of NO created, 6 moles of H2O are created so the ratio is 4:6
Explanation:
You just need to balance the equation.
NH3 + O2 -> NO + H2O
1. I started with hydrogen; there's 3 on the left and 2 on the right. Multiply them together to find a number they both go into (3×2=6, but in this case 6 hydrogen on each side does not work so I doubled it so there is 12 hydrogen on each side).
This will bring you to this:
4NH3 + O2 -> NO + 6H2O
2. Now get equal amounts of nitrogen on each side. There's 4 nitrogen on the left side, and 1 on the right. Multiply the right by 4. Then you will have this:
4NH3 + O2 -> 4NO + 6H2O
3. Last thing you need to do is have the same amount of oxygen on both sides. On the left you have 2 and on the right you have 10. Get the left to 10 by multiplying it by 5.
Balanced: 4NH3 + 5O2 -> 4NO + 6H2O
In word form, for every reaction between 4 moles of ammonia and 5 moles of oxygen, 4 moles of nitric oxide and 6 moles of water will be created.
I hope this helps!