1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
4 years ago
15

A fire hose held near the ground shoots water at a speed of 6.5 m/s. At what angle(s) should the nozzle point in order that the

water land 2.5 m away (Fig. 3–36)? Why are there two different angles? Sketch the two trajectories.
Physics
1 answer:
Mariana [72]4 years ago
8 0

Answer:

17.72° or 72.28°

Explanation:

u = 6.5 m/s

R = 2.5 m

Let the angle of projection is θ.

Use the formula for the horizontal range

R=\frac{u^{2}Sin2\theta }{g}

2.5=\frac{6.5^{2}Sin2\theta }{9.8}

Sin 2θ = 0.58

2θ = 35.5°

θ = 17.72°

As we know that the range is same for the two angles which are complementary to each other.

So, the other angle is 90° - 17.72° = 72.28°

Thus, the two angles of projection are 17.72° or 72.28°.

You might be interested in
A box weighing 52.4 N is sliding on a rough horizontal floor with a constant friction force of magnitude LaTeX: ff. The box's in
german

Answer:

The magnitude of the friction force exerted on the box is 2.614 newtons.

Explanation:

Since the box is sliding on a rough horizontal floor, then it is decelerated solely by friction force due to the contact of the box with floor. The free body diagram of the box is presented herein as attachment. The equation of equilbrium for the box is:

\Sigma F = -f = m\cdot a (Eq. 1)

Where:

f - Kinetic friction force, measured in newtons.

m - Mass of the box, measured in kilograms.

a - Acceleration experimented by the box, measured in meters per square second.

By applying definitions of weight (W = m\cdot g) and uniform accelerated motion (v = v_{o}+a\cdot t), we expand the previous expression:

-f = \left(\frac{W}{g} \right)\cdot \left(\frac{v-v_{o}}{t}\right)

And the magnitude of the friction force exerted on the box is calculated by this formula:

f = -\left(\frac{W}{g} \right)\cdot \left(\frac{v-v_{o}}{t}\right) (Eq. 1b)

Where:

W - Weight, measured in newtons.

g - Gravitational acceleration, measured in meters per square second.

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

t - Time, measured in seconds.

If we know that W = 52.4\,N, g = 9.807\,\frac{m}{s^{2}}, v_{o} = 1.37\,\frac{m}{s}, v = 0\,\frac{m}{s} and t = 2.8\,s, the magnitud of the kinetic friction force exerted on the box is:

f = -\left(\frac{52.4\,N}{9.807\,\frac{m}{s^{2}} } \right)\cdot \left(\frac{0\,\frac{m}{s}-1.37\,\frac{m}{s}  }{2.8\,s} \right)

f = 2.614\,N

The magnitude of the friction force exerted on the box is 2.614 newtons.

5 0
3 years ago
Radio waves travel at a speed of 300,000,000 m/s. WFNX broadcasts radio waves at a
yKpoI14uk [10]

Answer:

Wavelength, \lambda=2.94\ m

Explanation:

It is given that,

Speed of radio waves is v=3\times 10^8\ m/s

Frequency of radio waves is f = 101,700,000 Hz

We need to find the wavelength of WFNX’s radio waves. The relation between wavelength, frequency and speed of a wave is given by :

v=f\lambda

\lambda is wavelength

\lambda=\dfrac{v}{f}\\\\\lambda=\dfrac{3\times 10^8}{101,700,000}\\\\\lambda=2.94\ m

So, the wavelength of WFNX’s radio waves is 2.94 m.

3 0
4 years ago
Which evidence supports the big band theory select 3 options
ruslelena [56]

Answer:

Explanation:

There are different theories and evidence about the big bang, in this case, we're going to see three evidence.

The galaxies are moving from us, this means space is expanded, this in consequence Big Bang's explosion.

The cosmic microwave background radiation is related to the early warmth of the universe.

The observed abundance of hydrogen, helium, deuterium, lithium, these are checked from the spectra of the oldest stars.

5 0
3 years ago
A uniform disk with a mass of 5.0 kg and diameter 30 cm rotates on a frictionless fixed axis through its center and perpendicula
igomit [66]

Answer:

Angular acceleration of the disk will be \alpha =10.714rad/sec^2

Explanation:

We have given mass of the disk m = 5 kg

Diameter of the disk d = 30 cm = 0.3 m

So radius r=\frac{d}{2}=\frac{0.3}{2}=0.15m

Moment of inertia of disk is given by I=\frac{1}{2}mr^2=\frac{1}{2}\times 5\times 0.15^2=0.056kgm^2

Force is given by F=4 N

Torque is given as \tau =Fr=4\times 0.15=0.6N-m

We also know that torque is given by \tau =I\alpha

0.6=0.056\times \alpha

\alpha =10.714rad/sec^2

5 0
3 years ago
•• CP Two blocks connected by a light horizontal rope sit at rest on a horizontal, frictionless surface. Block AA has mass 15.0
Firdavs [7]

Answer:

(a) T= 38.4 N

(b) m= 26.67 kg

Explanation:

We apply Newton's second law:

∑F = m*a (Formula 1)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Kinematics

d= v₀t+ (1/2)*a*t² (Formula 2)

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s²

v₀=0, d=18 m , t=5 s

We apply the formula 2 to calculate the accelerations of the blocks:

d= v₀t+ (1/2)*a*t²

18= 0+  (1/2)*a*(5)²

a= (2*18) / ( 25) = 1.44 m/s² to the right

We apply Newton's second law to the block A

∑Fx = m*ax

60-T = 15*1.44

60 - 15*1.44 = T

T = 38.4 N

We apply Newton's second law to the block B

∑Fx = m*ax

T = m*ax

38.4 = m*1.44

m= (38.4) / (1.44)

m = 26.67 kg

7 0
4 years ago
Other questions:
  • Under what conditions is the conservation of momentum applicable
    7·1 answer
  • With a magnetic field strength of 1.41 tesla, all of the protons in organic compounds will resonate over a narrow range of frequ
    11·1 answer
  • 1. A 46000N helicopter feels a net force of 9200N. What litt force is exerted by the air on the propellers?
    6·1 answer
  • A box sits on a table. A short arrow labeled F subscript N points up. A short arrow labeled F subscript g points down. A long ar
    6·1 answer
  • Consider the following neutral electron configurations in which 'n' has a constant value. Which configuration would belong to th
    5·1 answer
  • Which has the most momentum? (look at picture please)!!
    5·1 answer
  • A. If an electron of 16 eV had a head-on collision with a Cs atom at rest, what would be the kinetic energy in eV) of the recoil
    15·1 answer
  • PLEASE HELP ME !!!!!
    9·1 answer
  • Vin Diesel jumps out of a plane. Gravity pulls on him with 184N of force and his parachute pushes him up with 82 N of force.
    8·1 answer
  • The object was thrown vertically upwards at a speed of 30 m / s. How high does the body go?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!