This is a true statement if it is density you are looking for... Density problem.....
Density is the ratio of the mass of an object to its volume.
D = m / V
D = 104g / 14.3 cm³ = 7.27 g/cm³ .............. to three significant digits
The conventions for the units of density is that grams per cubic centimeter (g/cm³) are usually used for solids, but will work for anything. Grams per milliliter (g/mL) are usually used for liquids and grams per liter (g/L) are for gases. Therefore, by convention, the units for tin (a solid) should be in grams per cubic centimeter.
Since 1 mL is equivalent to 1 cm³, then the density could be expressed as 7.27 g/mL.
The accepted value for the density of tin is 7.31 g/cm³
Caffeine is more soluble in dichloromethane and the both are separated by evaporating the solvent.
Caffeine is an organic plant material which is more soluble in non-polar solvents than in polar solvents. As such, caffeine is more soluble in dichloromethane than in pure water.
In order to carry out a liquid-liquid exaction of dichloromethane from a commercial teabag, the dichloromethane is mixed with water. The caffeine is found to be more soluble in the organic dichloromethane layer than in water.
The two solvents can now be separated using a separating funnel and the solution is evaporated to obtain the caffeine.
Learn more: brainly.com/question/967776
Answer : The mole fraction of NaCl in a mixture is, 0.360
Explanation : Given,
Moles of
= 7.21 mole
Moles of
= 9.37 mole
Moles of
= 3.42 mole
Now we have to calculate the mole fraction of
.

Now put all the given values in this formula, we get:

Therefore, the mole fraction of NaCl in a mixture is, 0.360
Answer:
ion
However atoms may gain or lose electrons in ordinary chemical reactions. If an atom has the same number of electrons as protons, it is a neutral atom. If it has a net charge, (more or less electrons than protons) it is an ion. If it has more electrons than protons it has a net negative charge and is known as an anion.
Explanation:
Answer:
i got you dawg just gimme one sec i'll get to you fr g
Explanation: