Answer:
The sun's circumference is about 2,713,406 miles (4,366,813 km). It may be the biggest thing in this neighborhood, but the sun is just average compared to other stars. Betelgeuse, a red giant, is about 700 times bigger than the sun and about 14,000 times brighter.
Explanation:
looked it up
To find for the oxidizing agent, first let us write the
half reactions of this complete chemical reaction:
Ca = Ca2+ + 2e- <span>
2 H+ + 2e- = H2</span>
The oxidizing agent
would be the substance of the element that is reduced. We know that an element
is reduced when an electron is added to it. In this case, the element being
reduced is H. Therefore the oxidizing agent is HNO3.
Answer:
<span>HNO3</span>
2Fe + 3Cl₂ ---> 2FeCl₃
4.4mol of Fe, you have a 2:3 ratio of Fe to Cl₂ so divide 4.4/2 = 2.2 and multiply by three 2.2 x 3 = 6.6mol of Cl₂
hope that helps :)
Answer:
E and B
Explanation:
the warmer the weather the faster it will decompose, this why is why sometimes bodies last longer frozen, or in cool temperatures.
that statement takes a out.
An illness shouldn't effect a decomposing body
Weight also shouldn't effect a decomposing body
Being buried can make bodies decompose fast because of all the bugs and other animals that will get down there and decompose it faster
Answer: B,E
Answer:
See explanation
Explanation:
In an atom, the inner electrons may shield the outer electrons from the attractive force of the nucleus. We, refer to this phenomenon as the <u><em>shielding effect</em></u>, It is defined as a decrease in the magnitude of attraction between an electron and the nucleus of an atom having more than one electron shell (energy level).
Shielding effect increases down the group due to addition of more shells but decreases across the period due to the increase in the size of the nuclear charge.
As the magnitude of shielding increases down the group, ionization of electrons becomes easier and the first ionization energies of elements decreases as we move down the group. Since shielding effect decreases across the period, the first ionization energies of elements increases across the period.