The sun is the centre of our solar system
D would be the answer because The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
This question is incomplete the complete question is
A diver bounces straight up from a diving board, avoiding the diving board on the way down, and falls feet first into a pool. She starts with a velocity of 4.00 m/s and her takeoff point is 1.80 m above the pool. (a) What is her highest point above the board? (b) How long a time are her feet in the air? (c) What is her velocity when her feet hit the water?
Answer:
(a) Xs=0.459m
(b) t=0.984 s
(c) Vc=6.65 m/s
Explanation:
(a) To reach maximum distance

(b) For Time
To find t we must find t1 and t2
as
t=t1+t2
For T1

For T2

For Total Time
t=t1+t2
t=0.306+0.6789
t=0.984s
(c) To find Vc
Vc=Vb+gt2
Vc=(0)+(9.8)(0.6789)
Vc=6.65 m/s
Given
Car 1
m1 = 1300 kg
v1 = 20 m/s
m2 = 900 kg
v2 = -15 m/s
(Negative sign shows that direction of car 2 is opposite to car 1)
Procedure
As per the conservation of linear momentum, "The total momentum of the system before the collision must be equal to the total momentum after the collision". And this applies to the perfectly inelastic collision as well. Then the expression is,

Thus, we can conclude that the speed and direction of the cars after the impact is 5.68 m/s towards the first car.
Explanation:
As per Rayleigh criterion, the angular resolution is given as follows:

From this expression larger the size of aperture, smaller will be the value of angular resolution and hence, better will be the device i.e. precision for distinguishing two points at very high angular difference is higher.