This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!
<span>a+b= ?
3i +3j + (3i -3j) = ?
3i + 3j + 3i -3j =?
= 6i + 0j</span>
Final velocity = 0, thus final kinetic energy is 0
Initial kinetic energy:
0.5mv²
= 0.5 x 0.48 x 4.08²
= 4.0 J
Decrease in kinetic energy = 4 - 0 = 4 Joules
The final speed of an airplane is v = 92.95 m/s
The rate of change of position of an object in any direction is known as speed i.e. in other word, Speed is measured as the ratio of distance to the time in which the distance was covered.
Solution-
Here given,
Acceleration a= 10.8 m/s2 .
Displacement (s)= 400m
Then to find final speed of airplane v=?
Therefore from equation of motion can be written as,
v²=u²+ 2as
where, u is initial speed, v is final speed ,a is acceleration and s is displacement of the airplane. Therefore by putting the value of a & s in above equation and (u =0) i.e. the initial speed of airplane is zero.
v²= 2×10.8 m/s²×400m
v²=8640m/s
v=92.95m/s
hence the final speed of airplane v =92.95m/s
To know more about speed
brainly.com/question/13489483
#SPJ4
Answer:
no picture or anything so cant anwser
Explanation: