Answer:
Approximate escape speed = 45.3 km/s
Explanation:
Escape speed

Here we have
Gravitational constant = G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻²
R = 1 AU = 1.496 × 10¹¹ m
M = 2.3 × 10³⁰ kg
Substituting

Approximate escape speed = 45.3 km/s
Answer:
h = 16.67m
Explanation:
If the kinetic energy of the cylinder is 510J:


Where the inertia is given by:

Replacing this value:

Speed of the block will therefore be:

By conservation of energy:
Eo = Ef
Eo = 0

So,

Solving for h we get:
h=16.67m
my bad i clicked the wrong question to do sorry i wish i could help but im dumb lol
Answer:
EXplained
Explanation:
from conservation of energy
change in potential energy = gain in kinetic energy
so as all he balls are throws from the same height thus the change in potential energy is the same for all the balls thus the gain in kinetic energy is the same for all the balls and as they have the same initial velocity thus the final velocity is the same for all the balls.
Answer:
68.8 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) of box = 18 Kg
Coefficient of friction (μ) = 0.39
Force of friction (F) =?
Next, we shall determine the normal force of the box. This is illustrated below:
Mass (m) of object = 18 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Normal force (N) =?
N = mg
N = 18 × 9.8
N = 176.4 N
Finally, we shall determine the force of friction experienced by the object. This is illustrated below:
Coefficient of friction (μ) = 0.39
Normal force (N) = 176.4 N
Force of friction (F) =?
F = μN
F = 0.39 × 176.4
F = 68.796 ≈ 68.8 N
Thus, the box experience a frictional force of 68.8 N.