Answer: Colligative properties are those properties of solutions that are dependent on the concentration of the solutes in the solution.
Colligative properties has to do with solutions, that is, solutes that are dissolved in solvents. Examples of colligative properties are: freezing point depression, vapour pressure lowering, boiling point elevation and osmotic pressure. Colligative properties do not depend on the identity of the solutes, this implies that the effect of colligative properties are uniform across all solutions. For example, the freezing point depression of any solution will depend on the concentration of solutes that are dissolve in solution.
The arrow shows that the bond between the chlorine atom and the fluorine atom is nonpolar. The electrons in the bond are pulled more strongly by the fluorine atom, and the chlorine atom is slightly positive.
Explanation:
- The bond between Chlorine and fluorine is nonpolar bonding because both of them are sharing an equal number of electrons in the bond. H2, F2, and CL2 are common examples of this.
- Chlorine and fluorine are electronegative molecules but Fluorine is above chlorine in the periodic table. Since fluorine is above Chlorine, fluorine has slightly highest electronegative nature compare to fluorine. This is the reason why Fluorine molecules are attracting electrons more than chlorine atoms. This making chlorine atoms slightly positive in Cl and F bonding.
Answer:
I'd say the correct answer is A
Explanation:
hope this helps:)
sorry if its wrong:(
Answer:
Two moles of KClO3 decompose to form 5 moles of product.
Answer:

How does a balanced chemical equation verify the law of conservation of matter?

According to the Law conservation of matter
Mass can neither be created nor destroyed in a chemical reaction. That is, the total mass of the elements present in the products of a chemical reaction has to be equal to the total mass of the elements present in the reactants. In other words, the number of atoms of each element remains the same, before and after a chemical reaction. Hence, we need to balance the skeletal chemical equation.
