In this item, we are given with the x-component of the velocity. The y-component is equal to 0 m/s. The time it takes for it to reach the volume can be related through the equation,
d = V₀t + 0.5gt²
Substituting the known values,
225 = (0 m/s)(t) + (0.5)(9.8)(t²)
Simplifying,
t = 6.776 s
To determine the distance of the student from the edge of the building, we multiply the x-component by the calculated time.
range = (12.5 m/s)(6.776 s)
range = 84.7 m
<em>Answer: 84.7 m</em>
Answer:
57 N
Explanation:
Were are told that the force
of gravity on Tomas is 57 N.
And it acts at an inclined angle of 65°
Thus;
The vertical component of the velocity is; F_y = 57 sin 65
While the horizontal component is;
F_x = 57 cos 65
Thus;
F_y = 51.66 N
F_x = 24.09 N
The net force will be;
F_net = √((F_y)² + (F_x)²)
F_net = √(51.66² + 24.09²)
F_net = √3249.0837
F_net = 57 N
Answer:
Explanation:
Time taken to accelerate to 28 m /s
= 28 / 2 = 14 s
a ) Total length of time in motion
= 14 + 41 + 5
= 60 s .
b )
Distance covered while accelerating
s = ut + 1/2 at²
= 0 + .5 x 2 x 14²
= 196 m .
Distance covered while moving in uniform motion
= 28 x 41
= 1148 m
distance covered while decelerating
v = u - at
0 = 28 - a x 5
a = 5.6 m / s²
v² = u² - 2 a s
0 = 28² - 2 x 5.6 x s
s = 28² / 2 x 5.6
= 70 m .
Total distance covered
= 196 + 1148 + 70
= 1414 m
total time taken = 60 s
average velocity
= 1414 / 60
= 23.56 m /s .
A synthesis reaction forms one product from two reactants.
It has the general form A + X ⇒ AX.
Answer:
B1. Pascal's law is a principal in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid that the same change occur everywhere. 2 applications of Pascal's law are hydraulic lifts, hydraulic jacks, hydraulic hydraulic brakes ,hydraulic pumps. mark me as a braintalist list plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz