Answer:
Both Electrical and Magnetic Forces take place between two charged objects
Explanation:
Answer:


Explanation:
Given that
Intensity I


Radius of earth,R = 6370 Km
We know that surface area of earth, A



As we know that pressure due to intensity given as

V =Velocity of light



We know that force F
F = P .A


b)Gravitational force F




So F


Answer:
(B) The total internal energy of the helium is 4888.6 Joules
(C) The total work done by the helium is 2959.25 Joules
(D) The final volume of the helium is 0.066 cubic meter
Explanation:
(B) ∆U = P(V2 - V1)
From ideal gas equation, PV = nRT
T1 = 21°C = 294K, V1 = 0.033m^3, n = 2moles, V2 = 2× 0.033=0.066m^3
P = nRT ÷ V = (2×8.314×294) ÷ 0.033 = 148140.4 Pascal
∆U = 148140.4(0.066 - 0.033) = 4888.6 Joules
(C) P2 = P1(V1÷V2)^1.4 =148140.4(0.033÷0.066)^1.4= 148140.4×0.379=56134.7 Pascal
Assuming a closed system
(C) Wc = (P1V1 - P2V2) ÷ 0.4 = (148140.4×0.033 - 56134.7×0.066) ÷ 0.4 = (4888.6 - 3704.9) ÷ 0.4 = 1183.7 ÷ 0.4 = 2959.25 Joules
(C) Final volume = 2×initial volume = 2×0.033= 0.066 cubic meter
The given question is incomplete. The complete question is as follows.
A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0.90 m/s each second. The push force has a horizontal component of 20 N and a vertical component of 25 N downward. Calculate the coefficient of kinetic friction between the box and the floor.
Explanation:
The given data is as follows.
= 20 N,
= 25 N, a = -0.9
W = 83 N
m = 
= 8.46
Now, we will balance the forces along the y-component as follows.
N = W +
= 83 + 25 = 108 N
Now, balancing the forces along the x component as follows.
= ma
= 7.614 N
Also, we know that relation between force and coefficient of friction is as follows.

= 
= 0.0705
Thus, we can conclude that the coefficient of kinetic friction between the box and the floor is 0.0705.