When the object is at the top of the hill it has the most potential energy. If it is sitting still, it has no kinetic energy. As the object begins to roll down the hill, it loses potential energy, but gains kinetic energy. The potential energy of the position of the object at the top of the hill is getting converted into kinetic energy. Hope this helped. :)
Answer:
The magnitude of the acceleration of the elevator is 0.422 m/s²
Explanation:
Lets explain how to solve the problem
Due to Newton's Law ∑ Forces in direction of motion is equal to mass
multiplied by the acceleration
We have here two forces 460 N in direction of motion and the weight
of the person in opposite direction of motion
The weight of the person is his mass multiplied by the acceleration of
gravity
→ W = mg , where m is the mass and g is the acceleration of gravity
→ m = 45 kg and g = 9.8 m/s²
Substitute these values in the rule above
→ W = 45 × 9.8 = 441 N
The scale reads 460 N
→ F = 460 N , W = 441 N , m = 45 kg
→ F - W = ma
→ 460 - 441 = 45 a
→ 19 = 45 a
Divide both sides by 45
→ a = 0.422 m/s²
<em>The magnitude of the acceleration of the elevator is 0.422 m/s²</em>