1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
15

What do we call the process by which cells obtain the energy that they need?

Chemistry
1 answer:
REY [17]3 years ago
3 0
Cellular Respiration is the process in which cells break down food molecules to release the stores chemical energy.
You might be interested in
Extra points & brainlest to anyone that can help me with both answers
ki77a [65]

Answer:

1st blank: Organelles

2nd blank: Plant

3rd blank: chloroplasts

3 0
3 years ago
Pls Help! <br>No links Please!<br>I also want an explanation <br>I will give brainliest​
Cerrena [4.2K]

Answer:

uhhhhh not sure i cant see it

Explanation:

5 0
3 years ago
One property of metals is that they are: insulators brittle malleable none of these are properties of metals
wel
Metals are insulators and malleable. Hope this helps even though I'm late :)
6 0
3 years ago
The osmotic pressure of a solution containing 2.04 g of an unknown compound dissolved in 175.0 mLof solution at 25 ∘C is 2.13 at
kherson [118]

<u>Answer:</u> The molecular formula of the compound is C_4H_{10}O_4

<u>Explanation:</u>

To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

\pi=iMRT

Or,

\pi=i\times \frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}\times RT

where,

\pi = osmotic pressure of the solution = 2.13 atm

i = Van't hoff factor = 1 (for non-electrolytes)

Given mass of compound = 2.04 g

Volume of solution = 175.0 mL

R = Gas constant = 0.0821\text{ L atm }mol^{-1}K^{-1}

T = temperature of the solution = 25^oC=[273+25]=298K

Putting values in above equation, we get:

2.13atm=1\times \frac{2.04\times 1000}{\text{Molar mass of compound}\times 175.0}\times 0.0821\text{ L.atm }mol^{-1}K^{-1}\times 298K\\\\\text{Molar mass of compound}=\frac{1\times 2.04\times 1000\times 0.0821\times 298}{2.13\times 175.0}=133.9g/mol

  • <u>Calculating the molecular formula:</u>

The chemical equation for the combustion of compound having carbon, hydrogen and oxygen follows:

C_xH_yO_z+O_2\rightarrow CO_2+H_2O

where, 'x', 'y' and 'z' are the subscripts of carbon, hydrogen and oxygen respectively.

We are given:

Mass of CO_2=36.26g

Mass of H_2O=14.85g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

<u>For calculating the mass of carbon:</u>

In 44 g of carbon dioxide, 12 g of carbon is contained.

So, in 36.26 g of carbon dioxide, \frac{12}{44}\times 36.26=9.89g of carbon will be contained.

<u>For calculating the mass of hydrogen:</u>

In 18 g of water, 2 g of hydrogen is contained.

So, in 14.85 g of water, \frac{2}{18}\times 14.85=1.65g of hydrogen will be contained.

Mass of oxygen in the compound = (22.08) - (9.89 + 1.65) = 10.54 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon = \frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{9.89g}{12g/mole}=0.824moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{1.65g}{1g/mole}=1.65moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{10.54g}{16g/mole}=0.659moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.659 moles.

For Carbon = \frac{0.824}{0.659}=1.25\approx 1

For Hydrogen = \frac{1.65}{0.659}=2.5

For Oxygen = \frac{0.659}{0.659}=1

Converting the mole fraction into whole number by multiplying the mole fraction by '2'

Mole fraction of carbon = (1 × 2) = 2

Mole fraction of oxygen = (2.5 × 2) = 5

Mole fraction of hydrogen = (1 × 2) = 2

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H : O = 2 : 5 : 2

The empirical formula for the given compound is C_2H_5O_2

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is:

n=\frac{\text{Molecular mass}}{\text{Empirical mass}}

We are given:

Mass of molecular formula = 133.9 g/mol

Mass of empirical formula = 61 g/mol

Putting values in above equation, we get:

n=\frac{133.9g/mol}{61g/mol}=2

Multiplying this valency by the subscript of every element of empirical formula, we get:

C_{(2\times 2)}H_{(5\times 2)}O_{(2\times 2)}=C_4H_{10}O_4

Hence, the molecular formula of the compound is C_4H_{10}O_4

4 0
3 years ago
Which milligram quantity contains a total of four significant figures
denis23 [38]
D has a total of four significant figures.
7 0
3 years ago
Read 2 more answers
Other questions:
  • An unknown solution has a pH of 8
    14·1 answer
  • Two chemical reactions are shown:
    13·1 answer
  • New cells are created from A) matter. B) energy. C) other cells. D) non-living matter.
    8·2 answers
  • a dog is trained to sit and shake hands. These traits are most likely? a. inherited b. not inherited c. not acquired d. innate
    15·1 answer
  • Does the law of conservation of mass apply to physical changes or just chemical changes?
    7·1 answer
  • Which is a defining trait of a mineral?
    9·1 answer
  • Do you think it is important to classify things
    13·1 answer
  • Which statement describes the moment magnitude scale? Sorry if problemy not chemistry.
    15·1 answer
  • Where would you expect to find the 1H NMR signal of (CH3)2Mg relative to the TMS signal? (Hint: Magnesium is less electronegativ
    14·1 answer
  • The chemical equation of photosynthesis includes 6o2. which best describes this substance?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!