<h2>Given that,</h2>
Mass of two bumper cars, m₁ = m₂ = 125 kg
Initial speed of car X is, u₁ = 10 m/s
Initial speed of car Z is, u₂ = -12 m/s
Final speed of car Z, v₂ = 10 m/s
We need to find the final speed of car X after the collision. Let v₁ is its final speed. Using the conservation of momentum to find it as follows :

v₁ is the final speed of car X.

So, car X will move with a velocity of -12 m/s.
Answer:

Explanation:
from the ideal gas law we have
PV = mRT


HERE R is gas constant for dry air = 287 J K^{-1} kg^{-1}


We know by ideal gas law



for m_2



WE KNOW
PV = mRT
V, R and T are constant therefore we have
P is directly proportional to mass




Answer:
Atomic Size and Mass:
convert given density to kg/m^3 = 8900kg/m^3 2) convert to moles/m^3 (kg/m^3 * mol/kg) = 150847 mol/m^3 (not rounding in my actual calculations) 3) convert to atoms/m^3 (6.022^23 atoms/mol) = 9.084e28 atoms/m^3 4) take the cube root to get the number of atoms per meter, = 4495309334 atoms/m 5) take the reciprocal to get the diameter of an atom, = 2.2245e-10 m/atom 6) find the mass of one atom (kg/mol * mol/atoms) = 9.7974e-26 kg/atom Young's Modulus: Y=(F/A)/(dL/L) 1) F=mg = (45kg)(9.8N/kg) = 441 N 2) A = (0.0018m)^2 = 3.5344e-6 m^2 3) dL = 0.0016m 4) L = 2.44m 5) Y = 1.834e11 N/m^2 Interatomic Spring Stiffness: Ks,i = dY 1) From above, diameter of one atom = 2.2245e-10 m 2) From above, Y = 1.834e11 N/m^2 3) Ks,i = 40.799 N/m (not rounding in my actual calculations) Speed of Sound: v = ωd 1) ω = √(Ks,i / m,a) 2) From above, Ks,i = 40.799 N/m 3) From above, m,a = 9.7974e-26 kg 4) ω=2.0406e13 N/m*kg 5) From above, d=2.2245e-10 m 6) v=ωd = 4539 m/s (not rounding in actual calculations) Time Elapsed: 1) length sound traveled = L+dL = 2.44166 m 2) From above, speed of sound = 4539 m/s 3) T = (L+dL)/v = 0.000537505 s
Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:


From the above equation:

because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:

Substituting the value from ideal gas:

Follow the ideal gas table.
The
and between temperature
Interpolate

Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.


For point c:
Entropy is given by the following formula:
