Answer:
a) 578.0 cm²
b) 25.18 km
Explanation:
We're given the density and mass, so first calculate the volume.
D = M / V
V = M / D
V = (6.740 g) / (19.32 g/cm³)
V = 0.3489 cm³
a) The volume of any uniform flat shape (prism) is the area of the base times the thickness.
V = Ah
A = V / h
A = (0.3489 cm³) / (6.036×10⁻⁴ cm)
A = 578.0 cm²
b) The volume of a cylinder is pi times the square of the radius times the length.
V = πr²h
h = V / (πr²)
h = (0.3489 cm³) / (π (2.100×10⁻⁴ cm)²)
h = 2.518×10⁶ cm
h = 25.18 km
<span>NASA and the Mad Science Group of Montreal, Canada, have teamed in an effort to spark the imagination of children, encouraging more youth to pursue careers in science, technology, engineering and math. The two organizations recently signed a Space Act Agreement, officially launching the development of the Academy of Future Space Explorers.</span>
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.