The answer is permeability
I took my test and it was right
Answer:
, zirconium-103.
Explanation:
In a nuclear reaction, both the mass number and atomic number will conserve.
Let
represent the unknown particle.
The mass number of a particle is the number on the upper-left corner. The atomic number of a particle is the number on its lower-left corner under the mass number. For example, for the particle
,
is the mass number while
while
is the atomic number.
Sum of mass numbers on the left-hand side of the equation:
.
Note that there are three neutrons on the right-hand side of the equation. Sum of mass numbers on the right-hand side:
.
Mass number conserves. As a result,
.
Solve this equation for
:
.
Among the five choices, the only particle with a mass number of 103 is
. Make sure that atomic number also conserves.
Answer:
a) 213.3 mg/L
b) 62.61 mg/L
c) 0.0225 mg/L
Explanation:
Theoretical oxygen demand (ThOD)is essentially the amount of oxygen required for the complete degradation of a given compound into the final oxidized products
a) Given:
Concentration of acetic acid,
= 200 mg/L


Based on the reaction stoichiometry:
mass of
= 60 g
mass of
= 2(32) = 64 g

b) Given:
Concentration of ethanol,
= 30 mg/L


Based on the reaction stoichiometry:
mass of
= 46 g
mass of
= 3(32) = 96 g

c) Given:
Concentration of sucrose,
= 50 mg/L


Based on the reaction stoichiometry:
mass of
= 342 g
mass of
= 12(32) = 384 g

Answer:
The aerobic cellular respiration of the glucose where glucose is converted to energy via four steps as follows
1. Glycolysis (glucose break down to pyruvic acid)
2. Link reaction
3. Krebs cycle
4. Electron transport chain, or ETC
The four pyruvic acid produces Four ATP, twenty NADH, and four
molecules
Explanation:
When four pyruvic acid enters step two of the aerobic cellular respiration, they are converted by Oxidative decarboxylation into acetyl-CoA, four molecules of NADH and four molecule of CO2 are formed. This process is otherwise called the link reaction or transition step, because it connects or links the Krebs cycle and glycolysis.
From the chemical reactions involved in cellular respiration of one glucose molecule, from two pyruvic acid molecules we have 2 ATP molecules, 10 NADH molecules, and 2 FADH2 molecules
Hence from four pyruvic acid molecules we have that the acetyl-CoA produced from the four pyruvic acid enters the the Krebs cycle and forms four ATP molecules, twenty NADH molecules, and four
molecules.