Answer:
false
Explanation:
a physical property can be observed and stay the same but a chemical property can't
Answer:
You have to prepare for the lab (Materials, work, paper etc.)
Set up the lab know where the lab will be taking place
Read thru the experiment before doing the lab
Make a hypothesis
Write down notes, observations, measures anything important to help with the lab!
<span><span>1) Calculate the total number of nucleons (protons and neutrons) in the nuclide
<span>--> If the number of nucleons is even, there is a good chance it is stable.
</span></span><span><span>
2) Are there a magic number of protons or neutrons?
</span>--> 2,8,20,28,50,82,114 (protons), 126 (neutrons), 184 (neutrons) are particularly stable in nuclei.
</span><span>
3) Calculate the N/Z ratio.
<span>--> Use the belt of stability (Figure 1) to determine the best way to get from an unstable nucleus to a stable nucleus</span></span></span>
In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you