Answer:
0.209M
Explanation:
M1V1=M2V2
(28.5 mL)(0.183M)=(25.0mL)(M)
M2= 0.209M
*Text me at 561-400-5105 for private tutoring if interested: I can do homework, labs, and other assignments :)
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

Answer:
answer. the measure. is f=90 the equbaliint is 180
Explanation:
yan ang sagot ko
There will be oil bubbles because oil is more dense than water so therefore they would not mix