I would say C. Since the material is getting warmer, the atoms and molecules will start to move fasten and then also create more "messiness" (which is entropy with a less-nice word)
Answer:
Molar mass of the gas = 15.15 g/mol
Explanation:
PV = nRT
Where,
P = pressure
n = No. of moles
R = Gas constant
T = Temperature
P = 698 torr, 1 torr = 0.00131579 atm

Temperature = 111 °C = 100 + 273.15 = 384.15 K
V = 48.7 L
R = 0.082057 L atm/mol K
Now, PV = nRT


=1.4189 mol
Molar mass = Mass/ No. of moles
= 21.5/1.4189
=15.15 g/mol
Answer:
Take E(alpha particle energy) = 5.5 MeV (5.5x106x1.6x10-19)
If the charge on the lead nucleus is +82e(atomic number of lead is 82) = +82x1.6x10-19 C and the charge on the alpha particle is +2e = 2x1.6x10-19 C
Using dc = (1/4πεo)qQ/Eα we have
dc = [9x10^9x(2x1.6x10-19x82x1.6x10-19)]/5.5x10-13 = 6.67x10^-13m. = 6.67 x 10^-13 x 10^15 = 6.67 x 10^2fm
Note: 1meter = 10^15fentometer
Explanation:
This is well inside the atom but some eight nuclear diameters from the centre of the lead nucleus.
Answer: the answer is B!
Explanation:
S and p’s are valence electrons and if added, there is 7 in total !
Answer:
See explanation
Explanation:
Temperature is defined as a measure of the average kinetic energy of the molecules of a body.
When a substance is heated, the kinetic energy of its molecules increases as the temperature increases; hence the particles of the substance moves faster with increasing temperature.
When heat is withdrawn from a liquid, the temperature decreases and the average kinetic energy of the molecules decreases. The molecules become less energetic hence the liquid changes into solid