Answer:
See explanation below
Explanation:
You are not providing the starting material, however, I manage to find a similar question to this, so I'm gonna use it as a basis to help you answer yours.
Now let's analyze what is happening in the reaction so we can predict the final product.
We have a ketone here, reacting at first with LDA. This is a very strong base that is commonly used in reactions with ketones and aldehydes to promove a condensation. To do this, as LDA is a strong base it will occur firts an acid base reaction, substracting the most acidic hydrogen in the molecule (Which in this case, is the Beta hydrogen of the carbonile). This will cause an enolate formation.
Then, this enolate will react with the CH3I and form a new product. The final result would be a ketone with a methyl group now attached. In the picture 2, you have the mechanism and final product.
Hope this helps
The protons come from water. Sulfur oxides dissolve in water to form sulfurous and sulfuric acids, and nitrogen oxides dissolve to form nitrous and nitric acids.
Answer:
1.4 g H₂O
Explanation:
In a reaction, the reactants are usually not present in exact <em>stoichiometric amounts</em>, that is, <em>in the proportions indicated by the balanced equation</em>. Frequently a large excess of one reactant is supplied to ensure that the more expensive reactant is completely converted to the desired product. Consequently, some reactant will be left over at the end of the reaction. T<em>he reactant used up first in a reaction</em> is called the <em>limiting reagent</em>, because <u>the maximum amount of product formed depends on how much of this reactant was originally present</u>. When this reactant is used up, no more product can be formed.