Answer:
1. ionic bonds
2. metallic bonds
3. share
4. metal
5. non-metal
6. metals
7. NaCl ( sodium chloride )
8. CO2 ( carbon dioxide )
9. Cu ( copper )
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<u>Given information:</u>
Concentration of HCl = 0.035 M
<u>To determine:</u>
pH of the solution
<u>Explanation:</u>
Hydrochloric acid, HCl is a strong acid. It will completely dissociate to give H+ and Cl- ions
HCl → H+ + Cl-
Hence the concentration of H+ = Cl- = 0.035M
Now, pH measures the strength of H+ ions in a given solution. It is expressed as:
pH = -log[H+]
pH (HCl) = -log(0.035) = 1.46
Ans: pH of 0.035M HCl is 1.46
M=70.0 g
p=0.70 g/mL
v=m/p
v=70.0/0.70=100.00 mL
Answer:
The disruption of the bonds or attractions occurs during protein hydrolysis which results in the loss for the primacy structure. The peptide bonds is the bond affected in this scenario.
The disruption of the bonds however only exist in the process of denaturation and this results in a change in the confirmation which could be secondary, tertiary, and quaternary structural related. And example of the bonds affected include salt bridges, disulfide bridges, hydrogen bonds etc.