1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lyudmila [28]
3 years ago
11

An npn BJT has emitter, base, and collector doping levels of 1019 cm????3, 5 1018 cm????3, and 1017 cm????3, respectively. It is

biased in the normal active mode, with an emitter-base voltage of 1V. If the neutral base width is 100 nm, the emitter is 200 nm wide, and we have negligible base recombination, calculate the emitter current, emitter injection efficiency, and base transport factor

Engineering
1 answer:
Darina [25.2K]3 years ago
8 0

Answer:

Explanation:

The answer to the given problem is been solved in the fine attached below.

You might be interested in
Block D of the mechanism is confined to move within the slot of member CB. Link AD is rotating at a constant rate of ωAD = 6 rad
svet-max [94.6K]

Answer:

1) 1.71 rad/s

2) -6.22 rad/s²

Explanation:

Choose point C to be the origin.

Using geometry, we can show that the coordinates of point A are:

(a cos 30°, a sin 30° − b)

Therefore, the coordinates of point D at time t are:

(a cos 30° − b sin(ωt), a sin 30° − b + b cos(ωt))

The angle formed by CB with the x-axis is therefore:

tan θ = (a sin 30° − b + b cos(ωt)) / (a cos 30° − b sin(ωt))

1) Taking the derivative with respect to time, we can find the angular velocity:

sec² θ dθ/dt = [(a cos 30° − b sin(ωt)) (-bω sin(ωt)) − (a sin 30° − b + b cos(ωt)) (-bω cos(ωt))] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω [(a cos 30° − b sin(ωt)) sin(ωt) − (a sin 30° − b + b cos(ωt)) cos(ωt)] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω [(a cos 30° sin(ωt) − b sin²(ωt)) − (a sin 30° cos(ωt) − b + b cos²(ωt))] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω (a cos 30° sin(ωt) − b sin²(ωt) − a sin 30° cos(ωt) + b − b cos²(ωt)) / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω (a cos 30° sin(ωt) − a sin 30° cos(ωt)) / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -abω (cos 30° sin(ωt) − sin 30° cos(ωt)) / (a cos 30° − b sin(ωt))²

We know at the moment shown, a = 350 mm, b = 200 mm, θ = 30°, ω = 6 rad/s, and t = 0 s.

sec² 30° dθ/dt = -(350) (200) (6) (cos 30° sin(0) − sin 30° cos(0)) / (350 cos 30° − 200 sin(0))²

sec² 30° dθ/dt = -(350) (200) (6) (-sin 30°) / (350 cos 30°)²

dθ/dt = (200) (6) (1/2) / 350

dθ/dt = 600 / 350

dθ/dt = 1.71 rad/s

2) Taking the second derivative of θ with respect to time, we can find the angular acceleration.

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω [(a cos 30° − b sin(ωt))² (ω cos 30° cos(ωt) + ω sin 30° sin(ωt)) − (cos 30° sin(ωt) − sin 30° cos(ωt)) (2 (a cos 30° − b sin(ωt)) (-bω cos(ωt)))] / (a cos 30° − b sin(ωt))⁴

At t = 0:

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω [(a cos 30°)² (ω cos 30°) − (0 − sin 30°) (2 (a cos 30°) (-bω))] / (a cos 30°)⁴

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω (a²ω cos³ 30° − 2abω sin 30° cos 30°) / (a⁴ cos⁴ 30°)

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -bω (aω cos² 30° − 2bω sin 30°) / (a² cos³ 30°)

d²θ/dt² + 2 tan θ dθ/dt = -bω² (a cos² 30° − b) / (a² cos 30°)

Plugging in values:

d²θ/dt² + 2 tan 30° dθ/dt = -(200) (6)² (350 cos² 30° − 200) / (350² cos 30°)

d²θ/dt² + 2 tan 30° dθ/dt = -7200 (262.5 − 200) / (350² cos 30°)

d²θ/dt² + 2 tan 30° (1.71) = -4.24

d²θ/dt² = -6.22 rad/s²

4 0
3 years ago
Explain the difference between thermoplastics and thermosets giving structure property correlation.
Misha Larkins [42]

Answer:

Explanation:

Thermosetting polymers are infusible and insoluble polymers. The reason for such behavior is that the chains of these materials form a three-dimensional spatial network, intertwining with strong equivalent bonds. The structure thus formed is a conglomerate of interwoven chains giving the appearance and functioning as a macromolecule, which as the temperature rises, simply the chains are more compacted, making the polymer more resistant to the point where it degrades.

Macromolecules are molecules that have a high molecular mass, formed by a large number of atoms. Generally they can be described as the repetition of one or a few minimum units or monomers, forming the polymers. In contrast, a thermoplastic is a material that at relatively high temperatures, becomes deformable or flexible, melts when heated and hardens in a glass transition state when it cools sufficiently. Most thermoplastics are high molecular weight polymers, which have associated chains through weak Van der Waals forces (polyethylene); strong dipole-dipole and hydrogen bond interactions, or even stacked aromatic rings (polystyrene). Thermoplastic polymers differ from thermosetting polymers or thermofixes in that after heating and molding they can overheat and form other objects.

Thermosetting plastics have some advantageous properties over thermoplastics. For example, better resistance to impact, solvents, gas permeation and extreme temperatures. Among the disadvantages are, generally, the difficulty of processing, the need for curing, the brittle nature of the material (fragile) and the lack of reinforcement when subjected to tension. But even so in many ways it surpasses the thermoplastic.

The physical properties of thermoplastics gradually change if they are melted and molded several times (thermal history), these properties are generally diminished by weakening the bonds. The most commonly used are polyethylene (PE), polypropylene (PP), polybutylene (PB), polystyrene (PS), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), ethylene polyterephthalate (PET), Teflon (or polytetrafluoroethylene, PTFE) and nylon (a type of polyamide).

They differ from thermosets or thermofixes (bakelite, vulcanized rubber) in that the latter do not melt when raised at high temperatures, but burn, making it impossible to reshape them.

Many of the known thermoplastics can be the result of the sum of several polymers, such as vinyl, which is a mixture of polyethylene and polypropylene.

When they are cooled, starting from the liquid state and depending on the temperatures to which they are exposed during the solidification process (increase or decrease), solid crystalline or non-crystalline structures may be formed.

This type of polymer is characterized by its structure. It is formed by hydrocarbon chains, like most polymers, and specifically we find linear or branched chains

4 0
3 years ago
A common process for increasing the moisture content of air is to bubble it through a column of water. The air bubbles are assum
likoan [24]

Answer:

Explanation:

Assumptions is that

1. The flow is an unsteady one

2. Bubbles diameter is constant

3. The bubble velocity is slow

4. There is no homogenous reaction

5. It has a one dimensional flux model along the radial direction

5 0
3 years ago
Tires can be recycled instead of thrown out.<br> True<br> False
Arisa [49]

Answer:

True :)

Explanation:

You can recycle it! Tire recycling is the most practical and environment-friendly way of disposing of old and worn-out tires. Due to their inherent durability, large volume and environment and health risks, tires are one of the most problematic sources of solid wastes.

Hope it helped have a nice day! :)

8 0
2 years ago
Which type of engineering design uses an already-existing design?
Arte-miy333 [17]
The answer is D I’m 90% sure
4 0
3 years ago
Read 2 more answers
Other questions:
  • Thermal energy generated by the electrical resistance of a 5-mm-diameter and 4-m-long bare cable is dissipated to the surroundin
    12·1 answer
  • Is CO, an air pollutant? How does it differ from other emissions resulting from the combustion of fossil fuels?
    7·1 answer
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    5·1 answer
  • Air enters a compressor operating at steady state with pressure of 90 kPa, at a temperature of 350 K, and a volumetric flow rate
    13·1 answer
  • Water is pumped from one large reservoir to another at a higher elevation. If the flow rate is 2.5 ft3 /s and the pump delivers
    12·1 answer
  • Breaks do not overheat true false ?
    6·1 answer
  • Ammonia in a piston–cylinder assembly undergoes two processes in series. At the initial state, p1 = 120 lbf/in.2 and the quality
    15·1 answer
  • Is the MI-24 Hind the most widely exported combat helicopter in the world?
    14·1 answer
  • Connecting rods undergo a process to alleviate manufacturing stresses from forging, a process known as ______.​
    7·1 answer
  • Why is California a good place for engineers to build suspension bridges?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!