Answer:
<h2>
<em>6,142mm²</em></h2>
Explanation:
Given the dimension of a paper measured by a ruler as 7.4 cm wide and 8.3 cm long, the area of the paper is expressed using the area for calculating the area of a rectangle as shown;
Area of the piece of paper = Length * Width
Given length = 7.4cm
Length = 74mm (Since 10mm = 1cm)
Width = 8.3cm
Width (in mm) = 83mm
We converted to mm since the ruler used to measure has a division of 1mm.
Substituting the given values into the formula, we will have:
Area of the piece of paper = 74mm * 83mm
Area of the piece of paper = 6,142mm²
<em>Hence, the area of the piece of paper is 6,142mm²</em>
The electron is a type of low-mass, very negatively charged with a particle. As such, it can easily be deflected by passing close to other electrons or the positive nucleus of an atom. m = mass of an electron in kg = 9.10938356 × 10-31 kilograms. e = magnitude of the charge of an electron in coulombs = 1.602 x 10-19 coulombs. Hope this helps!
The final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
<h3>
Time of motion of the girl</h3>
The time of motion of the girl is calculated as follows;
h = vt + ¹/₂gt²
where;
- v is initial vertical velocity = 0
- t is time of motion
- g is acceleration due to gravity
Substitute the given parameters and solve for time of motion;
50.8 = 0 + ¹/₂(9.8)t²
2(50.8) = 9.8t²
101.6 = 9.8t²
t² = 101.6/9.8
t² = 10.367
t = √10.367
t = 3.22 seconds
<h3>Final vertical velocity of the skydiver</h3>
vf = vi + gt
where;
vi is the initial vertical velocity = 0
vf = 0 + 9.8(3.22)
vf = 31.56 m/s
Thus, the final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
Learn more about vertical velocity here: brainly.com/question/24949996
#SPJ1
Answer: final Velocity v = 10.2m/s
Explanation:
Final speed v(t) is given as
v(t) = u + at .......1
Where; u = the initial speed
a = acceleration
t = time taken
The total distance travelled d is given as
d = ut + 1/2(at^2)
Given
d = 5.0m
u = 2.0m
a = g = 10m/s2 (acceleration due to gravity)
Substituting into the equation above we have
5 = 2t + 5t^2
5t^2 +2t -5 = 0
Applying the quadratic formula. We have;
t = 0.82s & t = -1.22s
t cannot be negative
t = 0.82s
From equation 1 above
v = 2.0m/s + 10(0.82)m/s
v = 10.2m/s
C. Temperature, chemical composition and mineral structure
Explanation:
The Bowen's reaction series illustrates the relationship between temperature, chemical composition and mineral structure.
The series is made up of a continuous and discontinuous end through which magmatic composition can be understood as temperature changes.
- The left part is the discontinuous end while the right side is the continuous series.
- From the series, we understand that a magmatic body becomes felsic as it begins to cool to lower temperature.
- A magma at high temperature is ultramafic and very rich in ferro-magnesian silicates which are the chief mineral composition of olivine and pyroxene. These minerals are predominantly found in mafic- ultramafic rocks. Also, we expect to find the calcic-plagioclase at high temperatures partitioned in the magma.
- At a relatively low temperature, minerals with frame work structures begins to form . The magma is more enriched with felsic minerals and late stage crystallization occurs here.
Learn more:
Silicate minerals brainly.com/question/4772323
#learnwithBrainly