The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Explanation:
Velocity = displacement / time
v = √((58 m)² + (135 m)²) / (12 min × 60 s/min)
v = 0.20 m/s
The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:
<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s
The negative sign denotes the direction of the ball.
Answer:
what do you mean by this?
Explanation: