1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
11

How many "one-sixth parts are needed to make onewhole?​

Physics
1 answer:
TEA [102]3 years ago
8 0
6 one-sixth parts are needed to make a whole.
You might be interested in
A power supply is connected to a 59 Ohm resistor and a 53 Ohm resistor in series. The total current is found to be 0.15 A. What
kirill [66]

the answer is 47265.dug

Explanation:

im bot sure

4 0
2 years ago
A uniform, 4.5 kg, square, solid wooden gate 2.0 mm on each side hangs vertically from a frictionless pivot at the center of its
True [87]

Answer:

The angular velocity is  w = 1.43\  rad/sec

Explanation:

From the question we are told that

   The  mass of wooden gate  is m_g = 4.5 kg

    The  length of side is  L = 2 m

    The mass of the raven is  m_r = 1.2 kg

     The initial speed of the raven is u_r = 5.0m/s

     The final speed of the raven is   v_r = 1.5 m/s

From the law of  conservation of angular momentum we express this question mathematically as

       Total initial angular momentum  of both the Raven and  the Gate =  The Final angular momentum of both the Raven and the Gate  

The initial angular momentum of the Raven is m_r * u_r * \frac{L}{2}

Note: the length is half because the Raven hit the gate at the mid point

The initial angular momentum of the Gate is  zero

Note: This above is the generally formula for angular momentum of  square objects

  The final angular velocity  of the Raven is  m_r * v_r * \frac{L}{2}

   The  final angular velocity of the Gate  is   \frac{1}{3} m_g L^2 w

Substituting this formula

  m_r * u_r * \frac{L}{2}  =   \frac{1}{3} m_g L^2 w + m_r * v_r * \frac{L}{2}

  \frac{1}{3} m_g L^2 w   =    m_r * v_r * \frac{L}{2} -   m_r * u_r * \frac{L}{2}

  \frac{1}{3} m_g L^2 w   =    m_r *  \frac{L}{2} * [u_r - v_r]

Where w is the angular velocity

     Substituting value  

   \frac{1}{3} (4.5)(2)^2  w   =    1.2 *  \frac{2}{2} * [5 - 1.5]

     6w = 4.2

       w = \frac{6}{4.2}

            w = 1.43\  rad/sec

5 0
2 years ago
Does anyone know this
NARA [144]

1) The net force is 16 N to the right

2) The net force is 98 N to the left

3) The net  force is 0.5 N downward

4) The net force is 170 N to the right

5) The net force is 175 N to the  right

Explanation:

1)

To find the net force, we have to analyze all the forces acting on the box.

We have:

  • Force to the right: F_a = 20 N, the applied force
  • Force to the left: F_f = 4 N, the force of friction
  • Force to the bottom: F_g = 400 N, the weight of the box (the weight is always downward vertically)
  • Force to the top: F_N = 400 N. This is the normal force, which is the reaction force exerted by the table on the box: it points upward and counterbalances the weight of the box, preventing it from falling down)

Therefore, the horizontal net force is

F_x = F_a - F_f = 20 - 4 = 16 N (to the right)

While the vertical force is

F_y = F_N - F_g = 400 - 400 = 0

So the net force is 16 N to the right.

2)

In this case, we have the following forces:

  • F_g = 4 N downward, the weight of the ball
  • F_a = 100 N to the left, the force that kicks the ball
  • F_f = 2 N to the right, the force of friction
  • F_N = 4 N upward, the normal reaction exerted by the field on the ball

Therefore, the horizontal net force is

F_x =F_a - F_f = 100 -2 = 98 N (to the left)

While the vertical force is

F_y = F_g - F_N = 4 - 4 = 0 (downward)

And so, the net force is 98 N to the left.

3)

The force acting on the squirrel in this problem are:

  • F_g = 8 N downward, the weight of the squirrel
  • F_f = 7.5 N upward, the air resistance, acting upward

Both forces act vertically and there are no other forces acting in other directions, therefore the net force on the squirrel is simply equal to the net force on the vertical direction, which is:

F_y = F_g - F_f = 8 - 7.5 = 0.5 N

And since the weight is larger than the air resistance, the direction of the net force is downward.

4)

The forces acting on Monkey are:

  • F_1=95 N is the force applied to the right by Bunny
  • F_2 = 75 N is the force applied by Deer from the left (so, also on the right)
  • F_g = 50 N is the weight of Monkey, downward
  • F_N = 50 N is the normal reaction exerted by the surface, upward

So, the net force in the horizontal direction is

F_x = F_1 + F_2 = 95+75=170 N (to the right)

While the net force in the vertical direction is

F_y = F_N - F_g = 50 - 50 = 0

And therefore the net force is 170 N to the right

5)

The forces acting on Deer are:

  • F_a = 100 N + 100 N = 200 N to the right, the combined force applied by Bunny and Monkey
  • F_f = 25 N to the left, the force of friction
  • F_g = 150 N downward, the weight of the deer
  • F_N = 150 N upward, the normal reaction from the surface that balances the weight

So the net horizontal force is

F_x = F_a - F_f = 200 - 25 = 175 N to the right

While the net vertical force is

F_y = F_N - F_g = 150 - 150 = 0

So the net force is 175 N to the right.

Learn more about vector addition:

brainly.com/question/4945130

brainly.com/question/5892298

#LearnwithBrainly

3 0
2 years ago
Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates
olasank [31]

2) 20.2 m/s

In the first 4.4 seconds of its motion, the blue car accelerates at a rate of

a=4.6 m/s^2

So its final velocity after these 4.4 seconds is

v=u+at

where

u = 0 is the initial velocity (the car starts from rest)

a is the acceleration

t is the time

Substituting t = 4.4 s, we find

v=0+(4.6)(4.4)=20.2 m/s

After this, the car continues at a constant speed for another 8.5 s, so it will keep this velocity until

t=4.4 + 8.5 = 12.9 s

Therefore, the velocity of the car 10.4 seconds after it starts will still be 20.2 m/s.

3) 216.2 m

The distance travelled by the car during the first 4.4 s of the motion is given by

d_1 = ut_1 + \frac{1}{2}at_1^2

where

u = 0 is the initial velocity

t_1 = 4.4 s is the time

a=4.6 m/s^2 is the acceleration

Substituting,

d_1 = 0 +\frac{1}{2}(4.6)(4.4)^2=44.5 m

The car then continues for another 8.5 s at a constant speed, so the distance travelled in the second part is

d_2 = vt_2

where

v_2 = 20.2 m/s is the new velocity

t_2 = 8.5 s is the time

Substituting,

d_2 = (20.2)(8.5)=171.7 m

So the total distance travelled before the brakes are applied is

d=44.5 m+171.7 m=216.2 m

4) -6.62 m/s^2

We are told that the blue car comes to a spot at a distance of 247 meters from the start. Therefore, the distance travelled by the car while the brakes are applied is

d_3 = 247 m -216.2 m=30.8 m

We can find the acceleration of the car during this part by using the SUVAT equation:

v_f^2 - v_i^2 = 2ad_3

where

v_f = 0 is the final velocity (zero since the car comes to a stop)

v_i = 20.2 m/s is the velocity of the car at the moment the brakes are applied

a is the acceleration

d_3 = 30.8 m

Solving for a, we find

a=\frac{v_f^2 -v_i^2 }{2d}=\frac{0-(20.2)^2}{2(30.8)}=-6.62 m/s^2

5 0
3 years ago
Suppose the tourist in question #1 instead threw the rock with an initial velocity of 8.0
Harman [31]

Answer:

Explanation:u=8m/s, a=8m/s*s, t=4s

Using v= u + at

v=8+-8*4

v=-24m/s

Displacement=s

Using s=½(u+v)t

s=½(8-24)4

s=½*-16*4

s=-8*4

s=32m( you can solve without observing the negative sign)

8 0
3 years ago
Other questions:
  • At very close range, which of these forces is stronger than the gravitational force a.) electric only, b.) magnetic only c.) ele
    9·2 answers
  • Calculate the total resistance in a parallel circuit made up of resistances of 2, 3, and 4.
    12·1 answer
  • What will the resistance be for a lamp that draws 4.6 amps of current from a 120-volt outlet? A. 550 ohms B. 115 ohms C. 26 ohms
    5·2 answers
  • In an overhead camshaft engine, the lobes make direct contact with the 
    15·2 answers
  • an apple with the mass of 0.95 kilograms hangs from a tree branch at 3.0 meters above the ground. what is the potential energy?
    14·1 answer
  • I do not know the answer nor the equation.
    11·1 answer
  • An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
    14·2 answers
  • What does a measured number tell you?
    12·1 answer
  • What makes a submarine dive?
    8·1 answer
  • What mechanism of energy is transferred by mass motion of fluid from one region of space to another?​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!