Hey there!
Rocks and sand are nonliving. All organisms are living.
Living organisms have five characteristics. Living organisms respond to a stimulus, need energy, grow, reproduce, and get rid of wastes. All living organisms consist of cells.
Hope this helps! Have a Brainly day! :D
<u>Given:</u>
Change in internal energy = ΔU = -5084.1 kJ
Change in enthalpy = ΔH = -5074.3 kJ
<u>To determine:</u>
The work done, W
<u>Explanation:</u>
Based on the first law of thermodynamics,
ΔH = ΔU + PΔV
the work done by a gas is given as:
W = -PΔV
Therefore:
ΔH = ΔU - W
W = ΔU-ΔH = -5084.1 -(-5074.3) = -9.8 kJ
Ans: Work done is -9.8 kJ
Answer:
nope its a myth don't worry :)
Answer:
A) 14. 25 × 10²³ Carbon atoms
B) 34.72 grams
Explanation:
1 molecule of Propane has 3 atoms of Carbon and 8 atoms of Hydrogen.
The sample has 3.84 × 10²⁴ H atoms.
If 8 atoms of Hydrogrn are present in 1 molecule of propane.
3.84 × 10²⁴ H atoms are present in

<u>= 4.75 × 10²³ molecules of Propane</u>.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
No. of Carbon atoms in 1 molecule of propane = 3
=> C atoms in 4.75× 10²³ molecules of Propane = 3 × 4.75 × 10²³
<u>= 14.25 × 10²³ </u>
<u>________________________________________</u>
<u>Gram</u><u> </u><u>Molecular</u><u> </u><u>Mass</u><u> </u><u>of</u><u> </u><u>Propane</u><u>(</u><u>C3H8</u><u>)</u>
= 3 × 12 + 8 × 1
= 36 + 8
= 44 g
1 mole of propane weighs 44g and has 6.02× 10²³ molecules of Propane.
=> 6.02 × 10²³ molecules of Propane weigh = 44 g
=> 4. 75 × 10²³ molecules of Propane weigh =



<u>= 34.72 g</u>
Answer:
Explanation:
Combustion reaction is given below,
C₂H₅OH(l) + 3O₂(g) ⇒ 2CO₂(g) + 3H₂O(g)
Provided that such a combustion has a normal enthalpy,
ΔH°rxn = -1270 kJ/mol
That would be 1 mol reacting to release of ethanol,
⇒ -1270 kJ of heat
Now,
0.383 Ethanol mol responds to release or unlock,
(c) Determine the final temperature of the air in the room after the combustion.
Given that :
specific heat c = 1.005 J/(g. °C)
m = 5.56 ×10⁴ g
Using the relation:
q = mcΔT
- 486.34 = 5.56 ×10⁴ × 1.005 × ΔT
ΔT= (486.34 × 1000 )/5.56×10⁴ × 1.005
ΔT= 836.88 °C
ΔT= T₂ - T₁
T₂ = ΔT + T₁
T₂ = 836.88 °C + 21.7°C
T₂ = 858.58 °C
Therefore, the final temperature of the air in the room after combustion is 858.58 °C