Answer:
c.boron-11
Explanation:
The atomic mass of boron is 10.81 u.
And 10.81 u is a lot closer to 11u than it is to 10u, so there must be more of boron-11.
To convince you fully, we can also do a simple calculation to find the exact proportion of boron-11 using the following formula:
(10u)(x)+(11u)(1−x)100%=10.81u
Where u is the unit for atomic mass and x is the proportion of boron-10 out of the total boron abundance which is 100%.
Solving for x we get:
11u−ux=10.81u
0.19u=ux
x=0.19
1−x=0.81
And thus the abundance of boron-11 is roughly 81%.
Explanation:
Ions form when atoms gain or lose electrons. This is so that they form a full outer shell of electrons. When an atom gains electrons it becomes a negative ion, because electrons are negatively charged. For example, all halogens (group 7 or 17) form negative ions as they gain an electron forming a 1- charge. When an atom loses electrons it becomes a positive ion, as it is losing some negative charge from the electrons. This would be for example, alkali metals (group 1) which lose an electron to form a positive ion with a 1+ charge, (ALL metals form positive ions).
Omg hard question but it’s also amazing imma think about that question
Answer: A little bit confused can you explain what I have to do
Explanation:
Answer : The specific heat of tin is, 0.213 J/g.K
Explanation :
Formula used :

where,
q = amount of heat lost = -399.4 J
c = specific heat capacity of tin = ?
m = mass of tin = 25.0 g
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Therefore, the specific heat of tin is, 0.213 J/g.K