Answer:
188 A
Explanation:
Parameters given:
Length of cable, L = 0.78 m
Angle, θ = 60º
Magnetic field, B = 5.5 * 10^(-5) T
Force experienced by wire, F = 7 * 10^(-3) N
The force experienced by a current carrying wire of length L, due to a magnetic field B is given as:
F = I * L * B * sinθ
=> I = F/(L * B * sinθ)
I = (7 * 10^(-3)) / (0.78 * 5.5 * 10^(-5) * sin60)
I = 188 A
Answer:
I = 578A
Explanation:
The magnitude of the peak value of the induced current flowing in a coild is given by


Where
I= current
N = Number of loops
angular velocity
R= Resistance
B = Magnetic field
A = Area
Replacing our values we have that,


<span>No. Neutron stars are the remnants of very large stars that have supernova'd. Anything below 1.44 solar masses becomes a dwarf, anything above 5 solar masses becomes a black hole. Everything in between becomes a neutron star (or quark star, but it's not proven).</span>
Answer:
x = 727.5 km
Explanation:
With the conditions given using trigonometry, we can find the tangent
tan θ = CO / CA
With CO the opposite leg and CE is the adjacent leg which is the distance from the Tierral to Sun
D =150 10⁶ km (1000m / 1 km)
D = 150 10⁹ m.
We must take the given angle to radians.
1º = 3600 arc s
π rad = 180º
θ = 1 arc s (1º / 3600 s arc) (pi rad / 180º) =
θ = 4.85 10⁻⁶ rad
That angle is extremely small, so we can approximate the tangent to the angle
θ = x / D
x = θ D
x = 4.85 10-6 150 109
x = 727.5 103 m
x = 727.5 km
It is D because our eye lenses reflect the white light we see and it also reflects the light to a point to where we can see colors and objects clearly... Hope this helps out ^-^''